1,163
Views
57
CrossRef citations to date
0
Altmetric
Review

Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances

& ORCID Icon
Pages 1221-1233 | Received 12 Feb 2020, Accepted 09 Jul 2020, Published online: 04 Aug 2020

References

  • Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970 Oct;104(1):313–322.
  • Kaplan HB, Greenberg EP. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol. 1985 Sep;163(3):1210–1214.
  • Egland KA, Greenberg EP. Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol Microbiol. 1999 Feb;31(4):1197–1204.
  • Perez PD, Hagen SJ, Nitabach MN. Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. PLoS One. 2010 Nov 16;5(11):e15473.
  • Shadel GS, Baldwin TO. Positive autoregulation of the Vibrio fischeri luxR gene. LuxR and autoinducer activate cAMP-catabolite gene activator protein complex-independent and -dependent luxR transcription. J Biol Chem. 1992 Apr 15;267(11):7696–7702.
  • Schuster M, Sexton DJ, Diggle SP, et al. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol. 2013;67:43–63.
  • Hense BA, Schuster M. Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev. 2015 Mar;79(1):153–169.
  • Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019 Jun;17(6):371–382.
  • Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016Aug11;14(9):576–588.
  • Hartman G, Wise R. Quorum sensing: potential means of treating gram-negative infections? Lancet. 1998Mar21;351(9106):848–849.
  • Grandclement C, Tannieres M, Morera S, et al. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev. 2016 Jan;40(1):86–116.
  • Manefield M, Rasmussen TB, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 2002 Apr;148(Pt 4):1119–1127.
  • Ismail AS, Valastyan JS, Bassler BL. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe. 2016 Apr 13;19(4):470–480.
  • Harder T, Campbell AH, Egan S, et al. Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra. J Chem Ecol. 2012 May;38(5):442–450.
  • Mathesius U, Mulders S, Gao M, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1444–1449.
  • Schenk ST, Hernandez-Reyes C, Samans B, et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell. 2014 Jun;26(6):2708–2723.
  • Telford G, Wheeler D, Williams P, et al. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun. 1998 Jan;66(1):36–42.
  • Smith RS, Fedyk ER, Springer TA, et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol. 2001 Jul 1;167(1):366–374.
  • Tateda K, Ishii Y, Horikawa M, et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun. 2003 Oct;71(10):5785–5793.
  • Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008 Feb;6(2):111–120.
  • Sturme MH, Kleerebezem M, Nakayama J, et al. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek. 2002 Aug;81(1–4):233–243.
  • Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol. 2015;6:1174.
  • Slamti L, Lereclus D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the bacillus cereus group. J Bacteriol. 2005 Feb;187(3):1182–1187.
  • Bouillaut L, Perchat S, Arold S, et al. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res. 2008 Jun;36(11):3791–3801.
  • Lyon GJ, Wright JS, Muir TW, et al. Key determinants of receptor activation in the agr autoinducing peptides of STAPHylococcus aureus. Biochemistry. 2002 Aug 6;41(31):10095–10104.
  • Monnet V, Juillard V, Gardan R. Peptide conversations in gram-positive bacteria. Crit Rev Microbiol. 2016 May;42(3):339–351.
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–564.
  • Ali L, Goraya MU, Arafat Y, et al. Molecular mechanism of quorum-sensing in enterococcus faecalis: its role in virulence and therapeutic approaches. Int J Mol Sci. 2017 May 3;18(5):960.
  • Bareia T, Pollak S, Eldar A. Self-sensing in bacillus subtilis quorum-sensing systems. Nat Microbiol. 2018 Jan;3(1):83–89.
  • Zetzmann M, Sanchez-Kopper A, Waidmann MS, et al. Identification of the agr peptide of listeria monocytogenes. Front Microbiol. 2016;7:989.
  • Ohtani K, Yuan Y, Hassan S, et al. Virulence gene regulation by the agr system in clostridium perfringens. J Bacteriol. 2009 Jun;191(12):3919–3927.
  • Zhao L, Xue T, Shang F, et al. Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun. 2010 Aug;78(8):3506–3515.
  • Beeston AL, Surette MG. pfs-dependent regulation of autoinducer 2 production in salmonella enterica serovar typhimurium. J Bacteriol. 2002 Jul;184(13):3450–3456.
  • Nichols JD, Johnson MR, Chou CJ, et al. Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. FEMS Microbiol Ecol. 2009 May;68(2):173–181.
  • Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 2002 Jan 31;415(6871):545–549.
  • Guo M, Gamby S, Zheng Y, et al. Small molecule inhibitors of AI-2 signaling in bacteria: state-of-the-art and future perspectives for anti-quorum sensing agents. Int J Mol Sci. 2013 Aug 29;14(9):17694–17728.
  • Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1639–1644.
  • Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013 Mar;37(2):156–181.
  • Neiditch MB, Federle MJ, Miller ST, et al. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell. 2005 May 27;18(5):507–518.
  • Taga ME, Miller ST, Bassler BL. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol Microbiol. 2003 Nov;50(4):1411–1427.
  • Li J, Attila C, Wang L, et al. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: effects on small RNA and biofilm architecture. J Bacteriol. 2007 Aug;189(16):6011–6020.
  • Biswa P, Doble M. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiol Lett. 2013 Jun;343(1):34–41.
  • Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. Isme J. 2012 Jul;6(7):1336–1344.
  • Watson WT, Minogue TD, Val DL, et al. Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell. 2002 Mar;9(3):685–694.
  • Erickson DL, Endersby R, Kirkham A, et al. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun. 2002 Apr;70(4):1783–1790.
  • Charlton TS, de Nys R, Netting A, et al. A novel and sensitive method for the quantification of N3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol. 2000 Oct;2(5):530–541.
  • Leipert J, Treitz C, Leippe M, et al. Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017 Dec;28(12):2538–2547.
  • Kim YW, Sung C, Lee S, et al. MALDI-MS-based quantitative analysis for ketone containing homoserine lactones in Pseudomonas aeruginosa. Anal Chem. 2015 Jan 20;87(2):858–863.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspect Med. 2012Nov1;2(11):a012427-a012427.
  • Verma SC, Miyashiro T. Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci. 2013 Aug 7;14(8):16386–16401.
  • Dessaux Y, Quorum Sensing FD. Quorum quenching in agrobacterium: A “go/no go system”?. Genes (Basel). 2018 Apr 16;9:4.
  • Williams P, Camara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol. 2009 Apr;12(2):182–191.
  • Stauff DL, Bassler BL. Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol. 2011 Aug;193(15):3871–3878.
  • Barnard AM, Bowden SD, Burr T, et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc London, Ser B. 2007 Jul 29;362(1483):1165–1183.
  • Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev. 2007 Jul;31(4):407–424.
  • Garde C, Bjarnsholt T, Givskov M, et al. Quorum sensing regulation in aeromonas hydrophila. J Mol Biol. 2010 Mar 5;396(4):849–857.
  • Swift S, Karlyshev AV, Fish L, et al. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol. 1997 Sep;179(17):5271–5281.
  • Schaefer AL, Greenberg EP, Oliver CM, et al. A new class of homoserine lactone quorum-sensing signals. Nature. 2008 Jul 31;454(7204):595–599.
  • Liao L, Schaefer AL, Coutinho BG, et al. An aryl-homoserine lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7587–7592.
  • Lindemann A, Pessi G, Schaefer AL, et al. Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont bradyrhizobium japonicum. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16765–16770.
  • Ahlgren NA, Harwood CS, Schaefer AL, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7183–7188.
  • Wade DS, Calfee MW, Rocha ER, et al. Regulation of Pseudomonas quinolone signal synthesis in pseudomonas aeruginosa. J Bacteriol. 2005 Jul;187(13):4372–4380.
  • Bredenbruch F, Geffers R, Nimtz M, et al. The pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol. 2006 8; Aug(8): 1318–1329.
  • Diggle SP, Matthijs S, Wright VJ, et al. The pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007 Jan;14(1):87–96.
  • Lee J, Zhang L. The hierarchy quorum sensing network in pseudomonas aeruginosa. Protein Cell. 2015 Jan;6(1):26–41.
  • Rampioni G, Falcone M, Heeb S, et al. unravelling the genome-wide contributions of specific 2-Alkyl-4-Quinolones and PqsE to quorum sensing in pseudomonas aeruginosa. PLoS Pathog. 2016 Nov;12(11):e1006029.
  • Dandela R, Mantin D, Cravatt BF, et al. Proteome-wide mapping of PQS-interacting proteins in pseudomonas aeruginosa. Chem Sci. 2018 Feb 28;9(8):2290–2294.
  • Lin J, Cheng J, Wang Y, et al. the pseudomonas quinolone signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol. 2018;8:230.
  • Flavier AB, Clough SJ, Schell MA, et al. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol. 1997 Oct;26(2):251–259.
  • Ryan RP, An SQ, Allan JH, et al. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015 Jul;11(7):e1004986.
  • Holden MT, Ram Chhabra S, de Nys R, et al. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol. 1999 Sep;33(6):1254–1266.
  • Tommonaro G, Abbamondi GR, Iodice C, et al. Diketopiperazines produced by the halophilic archaeon, haloterrigena hispanica, activate AHL bioreporters. Microb Ecol. 2012 Apr;63(3):490–495.
  • Uroz S, Oger PM, Chapelle E, et al. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol. 2008 Mar;74(5):1357–1366.
  • Bergonzi C, Schwab M, Naik T, et al. Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties. Sci Rep. 2018 Jul 26;8(1):11262.
  • Lin YH, Xu JL, Hu J, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol. 2003 Feb;47(3):849–860.
  • Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J, et al. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One. 2011;6(10):e26278.
  • Bijtenhoorn P, Schipper C, Hornung C, et al. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol. 2011 Aug 20;155(1):86–94.
  • Chowdhary PK, Keshavan N, Nguyen HQ, et al. Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry. 2007 Dec 18;46(50):14429–14437.
  • Dong YH, Xu JL, Li XZ, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3526–3531.
  • Mackness M, Mackness B. Human paraoxonase-1 (PON1): gene structure and expression, promiscuous activities and multiple physiological roles. Gene. 2015 Aug 1;567(1):12–21.
  • Sio CF, Otten LG, Cool RH, et al. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun. 2006 Mar;74(3):1673–1682.
  • Chai Y, Tsai CS, Cho H, et al. Reconstitution of the biochemical activities of the AttJ repressor and the AttK, AttL, and AttM catabolic enzymes of agrobacterium tumefaciens. J Bacteriol. 2007 May;189(9):3674–3679.
  • Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by variovorax paradoxus. J Bacteriol. 2000 Dec;182(24):6921–6926.
  • Wahjudi M, Papaioannou E, Hendrawati O, et al. PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiol-Sgm. 2011 Jul;157:2042–2055.
  • Utari PD, Vogel J, Quax WJ. Deciphering physiological functions of AHL quorum quenching acylases. Front Microbiol. 2017 Jun;19:8.
  • Bokhove M, Jimenez PN, Quax WJ, et al. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):686–691.
  • Koch G, Nadal-Jimenez P, Reis CR, et al. Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1568–1573.
  • Drake EJ, Gulick AM. Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. ACS Chem Biol. 2011 Nov 18;6(11):1277–1286.
  • Bergonzi C, Schwab M, Naik T, et al. The structural determinants accounting for the broad substrate specificity of the quorum quenching lactonase GcL. Chembiochem. 2019 Jul 15;20(14):1848–1855.
  • Hiblot J, Gotthard G, Elias M, et al. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. PLoS One. 2013;8(9):e75272.
  • Hiblot J, Gotthard G, Chabriere E, et al. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep. 2012;2:779.
  • Elias M, Dupuy J, Merone L, et al. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol. 2008 Jun 20;379(5):1017–1028.
  • Bzdrenga J, Hiblot J, Gotthard G, et al. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. BMC Res Notes. 2014 Jun;3(7):333.
  • Hiblot J, Bzdrenga J, Champion C, et al. Crystal structure of VmoLac, a tentative quorum quenching lactonase from the extremophilic crenarchaeon Vulcanisaeta moutnovskia. Sci Rep. 2015 Feb;5(1):8372.
  • Hiblot J, Gotthard G, Chabriere E, et al. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS One. 2012;7(10):e47028.
  • Chow JY, Xue B, Lee KH, et al. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem. 2010 Dec 24;285(52):40911–40920.
  • Wang LH, Weng LX, Dong YH, et al. Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem. 2004 Apr 2;279(14):13645–13651.
  • Tang K, Su Y, Brackman G, et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol. 2015 Jan;81(2):774–782.
  • Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 2001 Jun 14;411(6839):813–817.
  • Gao A, Mei GY, Liu S, et al. High-resolution structures of AidH complexes provide insights into a novel catalytic mechanism for N-acyl homoserine lactonase. Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):82–91.
  • Mei GY, Yan XX, Turak A, et al. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol. 2010 Aug;76(15):4933–4942.
  • Wang WZ, Morohoshi T, Ikenoya M, et al. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Applied and environmental microbiology. 2010 Apr;76(8):2524–30
  • Lopez-Jacome LE, Garza-Ramos G, Hernandez-Duran M, et al. AiiM lactonase strongly reduces quorum sensing controlled virulence factors in clinical strains of pseudomonas aeruginosa isolated from burned patients. Front Microbiol. 2019;10:2657.
  • Fan X, Liang M, Wang L, et al. Aii810, a Novel Cold-Adapted N-Acylhomoserine Lactonase Discovered in a Metagenome, Can Strongly Attenuate Pseudomonas aeruginosa Virulence Factors and Biofilm Formation. Front Microbiol. 2017;8:1950
  • Aldridge WN. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem J. 1953 Jan;53(1):117–124.
  • Harel M, Aharoni A, Gaidukov L, et al. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol. 2004 May;11(5):412–419.
  • Bar-Rogovsky H, Hugenmatter A, Tawfik DS. The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem. 2013 Aug 16;288(33):23914–23927.
  • Draganov DI, Teiber JF, Speelman A, et al. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005 Jun;46(6):1239–1247.
  • Elias M, Tawfik DS. Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J Biol Chem. 2012 Jan 2;287(1):11–20.
  • Roy V, Fernandes R, Tsao CY, et al. Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol. 2010 Feb 19;5(2):223–232.
  • Weiland-Brauer N, Kisch MJ, Pinnow N, et al. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Front Microbiol. 2016;7:1098.
  • Weiland-Brauer N, Malek I, Schmitz RA. Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis. PLoS One. 2019;14(1):e0211366.
  • Pustelny C, Albers A, Buldt-Karentzopoulos K, et al. Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in pseudomonas aeruginosa. Chem Biol. 2009 Dec 24;16(12):1259–1267.
  • Wullich SC, Kobus S, Wienhold M, et al. Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC, a mycobacterial dioxygenase of the alpha/betahydrolase fold family. J Struct Biol. 2019 Sep 1;207(3):287–294
  • Shinohara M, Nakajima N, Uehara Y. Purification and characterization of a novel esterase (beta-hydroxypalmitate methyl ester hydrolase) and prevention of the expression of virulence by Ralstonia solanacearum. J Appl Microbiol. 2007 Jul;103(1):152–162.
  • Lee MH, Khan R, Tao W, et al. Soil metagenome-derived 3-hydroxypalmitic acid methyl ester hydrolases suppress extracellular polysaccharide production in Ralstonia solanacearum. J Biotechnol. 2018 Mar 20;270:30–38.
  • Kanzaki H, Imura D, Nitoda T, et al. Enzymatic conversion of cyclic dipeptides to dehydro derivatives that inhibit cell division. J Biosci Bioeng. 2000;90(1):86–89.
  • Defoirdt T, Boon N, Bossier P. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog. 2010 Jul 8;6(7):e1000989.
  • Gerdt JP, Blackwell HE. Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol. 2014 Oct 17;9(10):2291–2299.
  • Garcia-Contreras R, Maeda T, Wood TK. Can resistance against quorum-sensing interference be selected? Isme J. 2016 Jan;10(1):4–10.
  • Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol. 2005 Feb;43:Spec No:101–9.
  • Garcia-Contreras R, Perez-Eretza B, Jasso-Chavez R, et al. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Dis P. 2015 Aug;73(6):ftv040.
  • Guendouze A, Plener L, Bzdrenga J, et al. Effect of quorum quenching lactonase in clinical isolates of pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front Microbiol. 2017;8:227.
  • Krzyzek P. Challenges and limitations of anti-quorum sensing therapies. Front Microbiol. 2019;10:2473.
  • Garcia-Contreras R, Maeda T, Wood TK. Resistance to quorum-quenching compounds. Appl Environ Microbiol. 2013 Nov;79(22):6840–6846.
  • Richards MJ, Edwards JR, Culver DH, et al. Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med. 1999 May;27(5):887–892.
  • Wagner S, Sommer R, Hinsberger S, et al. Novel strategies for the treatment of pseudomonas aeruginosa infections. J Med Chem. 2016 Jul 14;59(13):5929–5969.
  • Lee K, Yoon SS. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol. 2017 Jun 28;27(6):1053–1064.
  • Anandan K, Vittal RR. Quorum quenching activity of AiiA lactonase KMMI17 from endophytic bacillus thuringiensis KMCL07 on AHL- mediated pathogenic phenotype in pseudomonas aeruginosa. Microb Pathog. 2019 Jul;132:230–242.
  • Papaioannou E, Wahjudi M, Nadal-Jimenez P, et al. Quorum-quenching acylase reduces the virulence of pseudomonas aeruginosa in a caenorhabditis elegans infection model. Antimicrob Agents Chemother. 2009 Nov;53(11):4891–4897.
  • Stoltz DA, Ozer EA, Ng CJ, et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol. 2007 Apr;292(4):L852–60.
  • Hraiech S, Hiblot J, Lafleur J, et al. Inhaled lactonase reduces pseudomonas aeruginosa quorum sensing and mortality in rat pneumonia. PLoS One. 2014;9(10):e107125.
  • Utari PD, Setroikromo R, Melgert BN, et al. PvdQ quorum quenching acylase attenuates pseudomonas aeruginosa virulence in a mouse model of pulmonary infection. Front Cell Infect Microbiol. 2018;8:119.
  • Mahan K, Martinmaki R, Larus I, et al. Effects of signal disruption depends on the substrate preference of the lactonase. Front Microbiol. 2019;10:3003.
  • Remy B, Plener L, Decloquement P, et al. Lactonase specificity is key to quorum quenching in pseudomonas aeruginosa. Front Microbiol. 2020;11:762.
  • Birmes FS, Saring R, Hauke MC, et al. Interference with pseudomonas aeruginosa quorum sensing and virulence by the mycobacterial pseudomonas quinolone signal dioxygenase AqdC in combination with the N-acylhomoserine lactone lactonase QsdA. Infect Immun. 2019 Oct;87(10). DOI:10.1128/IAI.00278-19
  • Koch G, Nadal-Jimenez P, Cool RH, et al. Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase. FEMS Microbiol Lett. 2014 Jul;356(1):62–70.
  • Zhang B, Zhuang X, Guo L, et al. Recombinant N-acyl homoserine lactone-lactonase AiiAQSI-1 attenuates aeromonas hydrophila virulence factors, biofilm formation and reduces mortality in crucian carp. Mar Drugs. 2019 Aug 27;17:9.
  • Torres M, Reina JC, Fuentes-Monteverde JC, et al. AHL-lactonase expression in three marine emerging pathogenic Vibrio spp. PLoS One. 2018;13(4):e0195176.
  • Garge SS, Nerurkar AS. Attenuation of quorum sensing regulated virulence of pectobacterium carotovorum subsp. carotovorum through an ahl lactonase produced by lysinibacillus sp. Gs50. PLoS One. 2016;11(12):e0167344.
  • Fong J, Zhang C, Yang R, et al. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Sci Rep. 2018 Jan 18;8(1):1155.
  • Billings N, Millan M, Caldara M, et al. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2013;9(8):e1003526.
  • Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014 Apr;18:96–104.
  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016 Aug 11;14(9):563–575.
  • Fux CA, Costerton JW, Stewart PS, et al. Survival strategies of infectious biofilms. Trends Microbiol. 2005 Jan;13(1):34–40.
  • Bzdrenga J, Daude D, Remy B, et al. Biotechnological applications of quorum quenching enzymes. Chem Biol Interact. 2017 Apr;1(267):104–115.
  • Chow JY, Yang Y, Tay SB, et al. Disruption of biofilm formation by the human pathogen acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob Agents Chemother. 2014;58(3):1802–1805.
  • Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008 May 1;100(1):1–18.
  • Gbejuade HO, Lovering AM, Webb JC. The role of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015 Apr;86(2):147–158.
  • Ivanova K, Fernandes MM, Mendoza E, et al. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl Microbiol Biotechnol. 2015 May;99(10):4373–4385.
  • Costoya A, Velazquez Becerra LE, Melendez-Ortiz HI, et al. Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl chloride) catheters. Int J Pharm. 2019 Mar;10(558):72–81.
  • Remy B, Plener L, Poirier L, et al. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Sci Rep. 2016 Nov;23(6):37780.
  • Kim SR, Lee KB, Kim JE, et al. Macroencapsulation of quorum quenching bacteria by polymeric membrane layer and its application to MBR for biofouling control. J Membrane Sci. 2015 1; Jan(473): 109–117.
  • Oh HS, Yeon KM, Yang CS, et al. Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ Sci Technol. 2012 May 1;46(9):4877–4884.
  • Nguyen PDT, Mustapha NA, Kadokami K, et al. Quorum sensing between Gram-negative bacteria responsible for methane production in a complex waste sewage sludge consortium. Appl Microbiol Biotechnol. 2019 Feb;103(3):1485–1495.
  • Huang S, Bergonzi C, Schwab M, et al. Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLoS One. 2019;14(5):e0217059.
  • Schwab M, Bergonzi C, Sakkos J, et al. Signal disruption leads to changes in bacterial community population. Front Microbiol. 2019;10:611.
  • Xavier KB. Bacterial interspecies quorum sensing in the mammalian gut microbiota [C. R. Biologies 341 (2018) https://doi.org/10.1016/j.crvi.2018.03.006]. C R Biol. 2018 May - Jun;341(5):300.
  • Thompson JA, Oliveira RA, Djukovic A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 2015 Mar 24;10(11):1861–1871.
  • Hsiao A, Ahmed AM, Subramanian S, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014 Nov 20;515(7527):423–426.
  • Liu L, Yao W, Rao Y, et al. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 2017 Nov;24(1):569–581.
  • Gupta P, Chhibber S, Harjai K. Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns. 2015 Feb;41(1):153–162.
  • Mion S, Remy B, Plener L, et al. Quorum quenching lactonase strengthens bacteriophage and antibiotic arsenal against pseudomonas aeruginosa clinical isolates. Front Microbiol. 2019;10:2049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.