1,715
Views
60
CrossRef citations to date
0
Altmetric
Review

Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review

, &
Pages 35-44 | Received 06 May 2020, Accepted 12 Aug 2020, Published online: 08 Sep 2020

References

  • Hofer U. The cost of antimicrobial resistance. Nature Rev Microbiol. 2019;17(1):3.
  • Yan C, Tu -X-X, Wu W, et al. Antibiotics and immunotherapy in gastrointestinal tumors: friend or foe? World J Clin Cases. 2019;7(11):1253–1261.
  • Taran M, Rad M, Alavi M. Characterization of Ag nanoparticles biosynthesized by Bacillus sp. HAI4 in different conditions and their antibacterial effects. J Appl Pharm Sci. 2016;6(11):094–099.
  • Asadi N, Taran M, Rad M, et al. Effects of glucose, metformin, and protein on formation of flower-like nanocomposites of struvite in infected artificial urine medium by methicillin-resistant staphylococcus aureus (MRSA): new Report. Nano Biomed Eng. 2019;11(1):91–97.
  • Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34(1). DOI:10.1515/dmpt-2018-0032
  • Taran M, Rad M, Alavi M. Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: optimization of experiment design. Pharm Sci. 2017;23(3):198–206.
  • Taran M, Rad M, Alavi M. Biological synthesis of copper nanoparticles by using Halomonas elongata IBRC-M 10214/Sinteza biologica a nanoparticulelor de cupru prin utilizarea Halomonas elongata IBRC-M 10214. Industria Textila. 2016;67(5):351.
  • Alavi M, Karimi N. Ultrasound assisted-phytofabricated Fe3O4 NPs with antioxidant properties and antibacterial effects on growth, biofilm formation, and spreading ability of multidrug resistant bacteria. Artif Cells Nanomed Biotechnol. 2019;47(1):2405–2423.
  • Lin C-J, Chang L, Chu H-W, et al. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small. 2019;15(41):1902641.
  • Yadav P, Nishanthi ST, Purohit B, et al. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: an insight study. Carbon. 2019;152:587–597.
  • Dong X, Bond AE, Pan N, et al. Synergistic photoactivated antimicrobial effects of carbon dots combined with dye photosensitizers. Int J Nanomedicine. 2018;13:8025.
  • Lin F, Bao Y-W, Wu F-G. Carbon dots for sensing and killing microorganisms. C. 2019;5(2):33.
  • Owusu EGA, MacRobert AJ, Naasani I, et al. Photoactivable polymers embedded with cadmium-free quantum dots and crystal violet: efficient bactericidal activity against clinical strains of antibiotic-resistant bacteria. ACS Appl Mater Interfaces. 2019;11(13):12367–12378.
  • Luo P, Guan X, Yu Y, et al. Hydrothermal synthesis of graphene quantum dots supported on three-dimensional graphene for supercapacitors. Nanomaterials. 2019;9(2):201.
  • Jing S, Zhao Y, Sun R-C, et al. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition. ACS Sustain Chem Eng. 2019;7(8):7833–7843.
  • Pandit S, Behera P, Sahoo J, et al. In situ synthesis of amino acid functionalized carbon dots with tunable properties and their biological applications. ACS Appl Bio Mater. 2019;2(8):3393–3403.
  • Sharma S, Mehta SK, Ibhadon AO, et al. Fabrication of novel carbon quantum dots modified bismuth oxide (α-Bi2O3/C-dots): material properties and catalytic applications. J Colloid Interface Sci. 2019;533:227–237.
  • Ahmadian-Fard-Fini S, Ghanbari D, Salavati-Niasari M. Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Compos Part B Eng. 2019;161:564–577.
  • Omer KM, Aziz KHH, Salih YM, et al. Photoluminescence enhancement via microwave irradiation of carbon quantum dots derived from solvothermal synthesis of L-arginine. New J Chem. 2019;43(2):689–695.
  • Shahshahanipour M, Rezaei B, Ensafi AA, et al. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Mater Sci Eng C. 2019;98:826–833.
  • Zhao C, Wang X, Wu L, et al. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerfaces. 2019;179:17–27.
  • Jin C, Su K, Tan L, et al. Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Mater Des. 2019;177:107845.
  • Bing W, Sun H, Yan Z, et al. Programmed bacteria death induced by carbon dots with different surface charge. Small. 2016;12(34):4713–4718.
  • Rakhi RB. 16 - Preparation and properties of manipulated carbon nanotube composites and applications. In: Khan A, Jawaid M, Inamuddin, et al., editors. Nanocarbon and its composites. Woodhead Publishing; 2019. p. 489–520.
  • Al-Jumaili A, Alancherry S, Bazaka K, et al. Review on the antimicrobial properties of carbon nanostructures. Materials (Basel). 2017;10(9):1066.
  • Li S, Gao B, Wang Y, et al. Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination. 2019;464:94–104.
  • Alayande AB, Park HD, Vrouwenvelder JS, et al. Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes. Small. 2019;15(28):1–12.
  • Li R, Mansukhani ND, Guiney LM, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano. 2016;10(12):10966–10980. .
  • Sun L, Du T, Hu C, et al. Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng. 2017;5(10):8693–8701.
  • Anand A, Unnikrishnan B, Wei S-C, et al. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents–a minireview. Nanoscale Horiz. 2019;4(1):117–137.
  • Zeng Z, Yu D, He Z, et al. Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci Rep. 2016;6(1):20142. .
  • Yu L, Zhou W, Li Y, et al. Antibacterial thin-film nanocomposite membranes incorporated with graphene oxide quantum dot-mediated silver nanoparticles for reverse osmosis application. ACS Sustain Chem Eng. 2019;7(9):8724–8734. .
  • Konwar A, Kalita S, Kotoky J, et al. Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces. 2016;8(32):20625–20634.
  • Abu Rabe DI, Al Awak MM, Yang F, et al. The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity. Int J Nanomedicine. 2019;14:2655–2665.
  • Nanda SS, Yi DK, Kim K. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep. 2016;6(1):28443.
  • Yu H, Zhu W, Zhou H, et al. Porous carbon derived from metal–organic framework@ graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries. RSC Adv. 2019;9(17):9577–9583. .
  • Dogan‐Guner EM, Mohamed H, Orbey N, et al. Stabilization and controlled release of micro‐encapsulated hydrogen peroxide for wound treatment applications. J Appl Microbiol. 2019;126(3):965–972.
  • Sun H, Gao N, Dong K, et al. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8(6):6202–6210.
  • Kuo W-S, Chang C-Y, Chen -H-H, et al. Two-photon photoexcited photodynamic therapy and contrast agent with antimicrobial graphene quantum dots. ACS Appl Mater Interfaces. 2016;8(44):30467–30474.
  • Kuo W-S, Chen -H-H, Chen S-Y, et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials. 2017;120:185–194.
  • Kuo W-S, Shao Y-T, Huang K-S, et al. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces. 2018;10(17):14438–14446.
  • Kholikov K, Ilhom S, Sajjad M, et al. Improved singlet oxygen generation and antimicrobial activity of sulphur-doped graphene quantum dots coupled with methylene blue for photodynamic therapy applications. Photodiagnosis Photodyn Ther. 2018;24:7–14.
  • Fan H-Y, Yu X-H, Wang K, et al. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem. 2019;182:111620.
  • Taran M, Rad M, Alavi M. Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. BioImpacts. 2017;8(2):65–74.
  • Alavi M, Karimi N, Salimikia I. phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. J Ind Eng Chem. 2019;72:457–473.
  • Liu J, Rojas-Andrade MD, Chata G, et al. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale. 2018;10(1):158–166.
  • Alavi M, Karimi N, Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 2019;5(9):4228–4243.
  • Rahme K, Dagher N. Chemistry routes for copolymer synthesis containing PEG for targeting, imaging, and drug delivery purposes. Pharmaceutics. 2019;11(7):327.
  • Ashrafi M, Hamadanian M, AR G, et al. Improvement mechanical and antibacterial properties of epoxy by polyethylene glycol and Ag/CuO Nanoparticles. Polym Composites. 2019;40(9):3393–3401.
  • Wang Y, Song H, Wang G, et al. 131 I-labeled PEG and folic acid co-functionalized graphene quantum dots for tumor-targeted imaging. J Radioanal Nucl Chem. 2019;319(3):1119–1125.
  • Selli D, Tawfilas M, Mauri M, et al. Optimizing PEGylation of TiO2 nanocrystals through a combined experimental and computational study. Chem Mater. 2019;31(18):7531–7546.
  • Habiba K, Bracho-Rincon DP, Gonzalez-Feliciano JA, et al. Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Appl Mater Today. 2015;1(2):80–87.
  • Chen S, Quan Y, Yu Y-L, et al. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng. 2017;3(3):313–321.
  • Yang J, Gao G, Zhang X, et al. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon. 2019;146:827–839.
  • Luo F, Tang Z, Xiao S, et al. Study on properties of copper-containing austenitic antibacterial stainless steel. Mater Technol. 2019;34(9):525–533.
  • Travlou NA, Giannakoudakis DA, Algarra M, et al. S-and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon. 2018;135:104–111.
  • Sun Y, Shang D. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm. 2015;2015:1–8.
  • Domingues MM, Silva PM, Franquelim HG, et al. Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomedicine. 2014;10(3):543–551.
  • Li YJ, Harroun SG, Su YC, et al. Synthesis of self‐assembled spermidine‐carbon quantum dots effective against multidrug‐resistant bacteria. Adv Healthc Mater. 2016;5(19):2545–2554. .
  • Yang J, Zhang X, Ma Y-H, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces. 2016;8(47):32170–32181. .
  • Jijie R, Barras A, Bouckaert J, et al. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces. 2018;170:347–354.
  • Rabe DIA, Al Awak MM, Yang F, et al. The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity. Int J Nanomedicine. 2019;14:2655.
  • Hou P, Yang T, Liu H, et al. An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(iii) nanosensor. Nanoscale. 2017;9(44):17334–17341.
  • Liu J, Lu S, Tang Q, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale. 2017;9(21):7135–7142.
  • Jian H-J, Wu R-S, Lin T-Y, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11(7):6703–6716.
  • Yu A, Xun H, Yi J. Improving hydrogen sensing performance of TiO2 nanotube arrays by ZnO modification. Front Mater. 2019;6:70.
  • Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal functions of carbon “Quantum” Dots. ACS Appl Mater Interfaces. 2016;8(17):10761–10766.
  • Yan Y, Kuang W, Shi L, et al. Carbon quantum dot-decorated TiO2 for fast and sustainable antibacterial properties under visible-light. J Alloys Compd. 2018;777:234–243.
  • Zhang J, Liu X, Wang X, et al. Carbon dots-decorated Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial activity. J Hazard Mater. 2018;359:1–8.
  • Marković ZM, Kováčová M, Humpolíček P, et al. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagnosis Photodyn Ther. 2019;26:342–349.
  • Stankovic NK, Bodik M, Siffalovic P, et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir–Blodgett thin films. ACS Sustain Chem Eng. 2018;6(3):4154–4163.
  • Travlou NA, Algarra M, Alcoholado C, et al. Carbon quantum dot surface-chemistry-dependent Ag release governs the high antibacterial activity of Ag-metal–organic framework composites. ACS Appl Bio Mater. 2018;1(3):693–707.
  • Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol. 2019;45(2):201–222.
  • Oz AZ, Oz AA, Yazicioglu S, et al. Effectiveness of an antibacterial primer used with adhesive-coated brackets on enamel demineralization around brackets: an in vivo study. Prog Orthod. 2019;20(1):15.
  • Zhang J, An X, Li X, et al. Enhanced antibacterial properties of the bracket under natural light via decoration with ZnO/carbon quantum dots composite coating. Chem Phys Lett. 2018;706:702–707.
  • Kumar VB, Natan M, Jacobi G, et al. Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa. Int J Nanomedicine. 2017;12:725–730.
  • Kovacova M, Markovic ZM, Humpolicek P, et al. Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. ACS Biomater Sci Eng. 2018;4(12):3983–3993.
  • Wang X, Li L, Fu Z, et al. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance. J Mol Liq. 2018;268:578–586.
  • Moradlou O, Rabiei Z, Delavari N. Antibacterial effects of carbon quantum dots@ hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. J Photochem Photobiol A. 2019;379:144–149.
  • Dong X, Awak MA, Tomlinson N, et al. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. Plos One. 2017;12(9):e0185324.
  • Jin J-C, Xu Z-Q, Dong P, et al. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms. Carbon. 2015;94:129–141.
  • Han S, Zhang H, Xie Y, et al. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Appl Surf Sci. 2015;328:368–373.
  • Alavi M, Karimi N. Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int J Biol Macromol. 2019;128:893–901.
  • Lin F, Bao Y-W, Wu F-G. Carbon dots for sensing and killing microorganisms. C—J Carbon Res. 2019;5(2):33.
  • Li H, Huang J, Song Y, et al. Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interfaces. 2018;10(32):26936–26946.
  • Nie C, Cheng C, Ma L, et al. Mussel-inspired antibacterial and biocompatible silver-carbon nanotube composites: green and universal nanointerfacial functionalization. Langmuir. 2016;32(23):5955–5965.
  • Nie C, Yang Y, Cheng C, et al. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomater. 2017;51:479–494.
  • Bai Y, Gao J, Wang C, et al. Mixed surfactant solutions for the dispersion of multiwalled carbon nanotubes and the study of their antibacterial activity. J Nanosci Nanotechnol. 2016;16(3):2239–2245.
  • Liu C, Shi H, Yang H, et al. Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Mater Des. 2017;120:128–134.
  • Bellingeri R, Mulko L, Molina M, et al. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties. Mater Sci Eng C. 2018;90:461–467.
  • Assali M, Zaid AN, Abdallah F, et al. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomedicine. 2017;12:6647–6659.
  • Hao X, Chen S, Yu H, et al. Metal ion-coordinated carboxymethylated chitosan grafted carbon nanotubes with enhanced antibacterial properties. RSC Adv. 2016;6(1):39–43.
  • Koli VB, Dhodamani AG, Raut AV, et al. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J Photochem Photobiol A. 2016;328:50–58.
  • Xia L, Xu M, Cheng G, et al. Facile construction of Ag nanoparticles encapsulated into carbon nanotubes with robust antibacterial activity. Carbon. 2018;130:775–781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.