263
Views
4
CrossRef citations to date
0
Altmetric
Perspective

What are the origins of growing microbial resistance? Both Lamarck and Darwin were right

ORCID Icon, , & ORCID Icon
Pages 563-569 | Received 07 Jun 2020, Accepted 16 Oct 2020, Published online: 26 Oct 2020

References

  • Ligon BL. Biography Louis Pasteur: A controversial figure in a debate on scientific ethics. Semin Pediatr Infect Dis. 2002;13(2):134–141.
  • Schwartz M. Louis pasteur and molecular medicine: a centennial celebration. Mol Med. 1995;1(6):593–595.
  • Mitscher L, Pillai S, Gentry E, et al. Multiple drug resistance. Med Res Rev. 1999;19(6):477–496.
  • Blair J, Webber M, Baylay A, et al. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51. .
  • Stuart B, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12):122–129.
  • Zoulim F, Buti M, Lok A. Antiviral-resistant hepatitis B virus: can we prevent this monster from growing? J Viral Hepat. 2007;14(1):29–36.
  • Livermore D. Bacterial Resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003;36(1):11–23.
  • Gaylord G. Lamarck, Darwin and butler: three approaches to evolution. Am Scholar. 1961;30(2):238–249.
  • Mayr E. Lamarck revisited. J Hist Biol. 1972;5(1):55–94.
  • Balter M. Was Lamarck just a little bit right? Sci. 2000;228(5463):38.
  • Penny D. Epigenetics, Darwin, and Lamarck. Genome Biol Evol. 2015;7(6):1758–1760. .
  • Howard ST, Byrd TF. The rapidly growing mycobacteria: saprophytes and parasites. Microbes Infect. 2000;2(15):1845–1853.
  • Knothe H, Shah P, Krcmery V, et al. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315–317. .
  • Russell A, Tattawasart U, Maillard J, et al. Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob Agents Chemother. 1998;42(8):2151. .
  • Jain R, Rivera M, Lake J. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999;96(7):3801–3806.
  • Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol. 2013;51(2):328–340.
  • Ma N, Isaacs F. Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst. 2016;3(2):199–207.
  • Nakamura Y, Itoh T, Matsuda H, et al. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet. 2004;36(7):760–766. .
  • Battegay M, Flückiger U. Der Wert der klinischen Infektiologie. Internist (Berl). 2005;46(6):623–629.
  • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985;49(1):1–32.
  • Chopra I, Roberts M. Tetracycline Antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260.
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656.
  • Hu Y, Shamaei-Tousi A, Liu Y, et al. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS ONE. 2010;5(7):11818. .
  • Campbell LL, Williams OB. The effect of temperature on the nutritional requirements of facultative and obligate thermophilic bacteria. J Bacteriol. 1953;65(2):141–145.
  • Hamscher G, Sczesny S, Höper H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem. 2002;74(7):1509–1518. .
  • Kümmerer K. Resistance in the environment. J Antimicrob Chemother. 2004;54(2):311–320.
  • Boor K. Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol. 2006;4(1):0018–20.
  • Keith P. Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother. 2012;67(9):2069–2089.
  • MacFadden D, McGough S, Fisman D, et al. Antibiotic resistance increases with local temperature. Open Forum Infect Dis. 2017;4(1):179. .
  • Barancheshme F, Munir M. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol. 2018;17(8):2603.
  • Suzuki H, Taketani T, Kobayashi J, et al. Antibiotic resistance mutations induced in growing cells of Bacillus-related thermophiles. J Antibiot. 2018;71(3):382–389. .
  • Georgopapadakou N, Smith S, Sykes R. Penicillin-binding proteins in Bacteroides fragilis. J Antibiot. 1983;36(7):907–910.
  • Lukačlšinová M, Novak S, Paixão T. Stress-induced mutagenesis: stress diversity facilities the persistence of mutator genes. PLoS Comput Biol. 2017;13(7):e1005609.
  • Leon O, Panos C. Differences in penicillin-binding proteins of Streptococcus pyogenes and two derived, stabilized L forms. J Bacteriol. 1988;10(170):4775–4783.
  • Mendelman P, Chaffin D. PBP profiles of Haemophilus influenzae, H. aegyptius, and the H. influenzae biogroup aegyptius associated with brazilian purpuric fever. Diagn Microbiol Infect Dis. 1989;12(5):445–447.
  • Musser J. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995;8(4):496–514.
  • Henze U, Berger-Bachi B. Staphylococcus aureus penicillin-binding protein 4 and intrinsic β-lactam resistance. Antimicrob Agents Chemother. 1995;39(11):2415–2422.
  • Cosgrove D. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997;9(7):1031–1041.
  • Wagner P, Waldor M. Bacteriophage control of bacterial virulence. Infect Immun. 2002;70(8):3985–3993.
  • Nelson D, Young K. Contributions of PBP 5 and DD-Carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol. 2001;183(10):3055–3064.
  • Stewart P, Costerton J. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138.
  • Sulakvelidze A, Alavidze Z, Morris G. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659.
  • Schweizer H. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res. 2003;2(1):48–62.
  • Rodríguez J, Navarro M, Romero L, et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol. 2004;42(3):1089–1094. .
  • Hastings P, Rosenberg S, Slack A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 2004;12(9):401–404.
  • Bertsche U, Breukink E, Kast T, et al. In vitro murein (peptidoglycan) synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1b from Escherichia coli. J Biol Chem. 2005;280(45):38096–38101.
  • Hujer A, Kania M, Gerken T, et al. Structure-activity relationships of different beta-lactam antibiotics against a soluble form of Enterococcus faecium PBP5, a type II bacterial transpeptidase. Antimicrob Agents Chemother. 2005;49(2):612–618. .
  • Paterson D, Bonomo R. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686.
  • Walsh T, Toleman M, Poirel L, et al. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306–325. .
  • Tenover F. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006;119(6):3–10.
  • Sauvage E, Kerff F, Terrak M, et al. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32(2):234–258. .
  • Martínez J. Antibitics and antibitics resistance genes in natural environments. Science. 2008;321(5887):365–367.
  • Bo L, Mihai P. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37(1):443–447.
  • Labrie S, Samson J, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–327.
  • Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–332. .
  • Cayo R, Rodríguez MC, Espinal P, et al. Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(12):5907–5913. .
  • van Hoek A, Mevius D, Guerra B, et al. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2(203):1–27. .
  • Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One. 2011;6(3):17549.
  • Popowska M, Rzeczycka M, Miemik A, et al. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob Agents Chemother. 2012;56(3):1434–1443. .
  • Condell O, Iversen C, Cooney S, et al. Efficacy of biocides used in the modern food industry to control salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl Environ Microbiol. 2012;78(9):3087–3097. .
  • Sun S, Selmer M, Andersson D. Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One. 2014;9(5):97202.
  • Carlet J, Jarlier V, Harbarth S, et al. Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1(11):1–13. .
  • Goldstein B. Resistance to rifampicin: a review. J Antibiot. 2014;67(9):625–630.
  • Oldfield E, Feng X. Resistance-resistant antibiotics. Trends Pharmacol Sci. 2014;35(12):664–674.
  • von Wintersdorff C, Penders J, van Niekerk J, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7(173):1–10. .
  • Du D, Wang-Kan X, Neuberger A. Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol. 2018;16(9):523–539.
  • Sia I, Wieland M. Current concepts in the management of Tuberculosis. Mayo Clin Proc. 2011;86(4):348–361.
  • Fouad M, Rodriguez da Silva J, Galvão A, et al. Tuberculosis treatment. J Bras Pneumol. 2017;43(6):472–486. .
  • Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: an overview. Mini Rev Med Chem. 2018;18(1):58–71.
  • Myers JA. The natural history of Tuberculosis in the human body: forty-five years of observation. JAMA. 1965;194(10):1086–1092.
  • Palomino J, Martin A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol. 2013;8(9):1071–1080.
  • Mahajan R. Bedaquiline: first FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res. 2013;3(1):1.
  • Kakkar A, Dahiya N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis. 2014;94(4):357–362.
  • Goel D. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5(1):77.
  • Akiba T, Yokota T, Tamura N. Mutagenic effect of streptomycin on bacteria. Japan J Microb. 1957;1(3):197–204. .
  • Fatima R, Ashraf M, Ejaz S, et al. In vitro toxic action potential of anti tuberculosis drugs and their combinations. Environ Toxicol Pharmacol. 2013;36(2):501–513. .
  • Houston S, Fanning A. Current and potential treatment of tuberculosis. Drugs. 1994;48(5):689–708.
  • Davies P, Yew WW. Recent developments in the treatment of tuberculosis. Expert Opin. Investig Drugs. 2003;12(8):1297–1312. .
  • Chan E, Iseman M. Current medical treatment for tuberculosis. BMJ. 2002;325(7375):1282–1286.
  • Thomas M. The history of tuberculosis. Respir Med. 2006;100(11):1862–1870.
  • Zellweger JP. Treatment of tuberculosis. Expert Rev Respir Med. 2007;1(1):85–97.
  • Cardona PJ. Revisiting the natural history of tuberculosis. Arch. Immunol Ther Exp. 2010;58(1):7–14. .
  • Cox H, Ford N. Linezolid for the treatment of complicated drug-resistant tuberculosis: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2012;16(4):447–454.
  • Keshavjee S, Farmer P. Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med. 2012;367(10):931–936.
  • Horsburgh C, Barry E, Lange C. Treatment of tuberculosis. N Eng J Med. 2015;373(22):2149–2160.
  • Sotgiu G, Pontali E, Centis R, et al. Delamanid (OPC-67683) for treatment of multi-drugresistant tuberculosis. Expert Rev Anti Infect Ther. 2015;13(3): 305–315. .
  • Zuur M, Bolhuis M, Anthony R, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drugs Metabol Toxicol. 2016;12(5)509–521. .
  • Hofman S, Segers M, Ghimire S, et al. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin Emerging Drugs. 2016;21(1):103–116. .
  • Chen J, Zhang S, Cui P, et al. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2017;72(12):3272–3276. .
  • Dookie N, Rambaran S, Padayatchil N. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018;73(5):1138–1151.
  • Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Human Vaccines Immunotherapeutics. 2018;14(7):1697–1716. .
  • Lange C, Chesov D, Heyckendorf J. Drug-resistant tuberculosis: an update on disease burden, diagnosis and treatment. Respirology. 2018;23(7):656–673.
  • Prasanna A, Niranjan V. Classification of Mycobacterium tuberculosis DR, MDR,XDR isolates and identification of signature mutationpattern of drug resistance. Bioinformation. 2019;15(4):261–268.
  • Wen S, Jing W, Zhang T, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis. 2019;38(7):1293–1296. .
  • de Wet T, Warner D, Mizrahi V. Harnessing biological Insight to accelerate tuberculosis drug discovery. Acc Chem Res. 2019;52(8):2340–2348.
  • Shah I, Poojari V, Meshram H. Multi-drug resistant and extensively-drug resistant tuberculosis. Indian J Pediatrics. 2020;87(10):833–839. .
  • Lacobino A, Fattorini L, Giannoni F. Drug-Resistant Tuberculosis 2020: where We. Stand Appl Sci. 2020;10(6):2153. .
  • Alffenaar J, Akkerman O, Kim H. Precision and personalized medicine and anti-TB treatment: is TDM feasible for programmatic use? Int J Infect Dis. 2020;92:5–9.
  • Rossato D, de Queiroz F, Battista G. Shortened tuberculosis treatment regimens: what is new? J Bras Pneumol. 2020;46(2):1–8.
  • Lee A, Xie Y, Barry C. Current and future treatments for tuberculosis. BMJ. 2020;2(368):216.
  • Bard. The next evolutionary synthesis: from Lamarck and Darwin to genomic variation and systems biology. Cell Commun Signaling. 2011;9,30.
  • Liu Q, Wei J, Li Y, et al. Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments. Sci Adv. 2020;6(22):eaba4901. .
  • McGrath M, Gey van Pittius N, van Helden P, et al. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2014;69(2):292–302. .
  • Aly F, Donya S. In vivo antimutagenic effect of vitamins C and E against rifampicin-induced chromosome aberrations in mouse bone-marrow cells. Mutat Res. 2002;518(1):1–7.
  • Blanco M, Martínez A, Urios A, et al. Detection of oxidative mutagenesis by isoniazide and other hydrazine derivatives in Escherichi coli WP2 tester strain IC203, deficient in OxyR: strong protective effects of rat liver S9. Mutat Res. 1998;417(1):39–46. .
  • Wade D, Lohman P, Mattern I, et al. The mutagenicity of isoniazid in Salmonella and its effects on DNA repair and synthesis in human fibroblasts. Mutat Res. 1981;89(1):9–20. .
  • Sharmada S, Avraneel P, Atul P, et al. Mycobacterium smegmatis moxifloxacin persister cells produce high levels of hydroxyl radical, generating genetic resisters selectable not only with moxifloxacin, but also with ethambutol and isoniazid. Micro Soc. 2019;166(2):180–198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.