151
Views
14
CrossRef citations to date
0
Altmetric
Special Report

Drug discovery for primary amebic meningoencephalitis: from screen to identification of leads

ORCID Icon
Pages 1099-1106 | Received 08 Sep 2020, Accepted 25 Jan 2021, Published online: 11 Mar 2021

References

  • Jarolim KL, McCosh JK, Howard MJ, et al. A light microscopy study of the migration of Naegleria fowleri from the nasal submucosa to the central nervous system during the early stage of primary amebic meningoencephalitis in mice. J Parasitol. 2000 Feb;86(1):50–55.
  • Martinez-Castillo M, Cardenas-Zuniga R, Coronado-Velazquez D, et al. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol. 2016 Sept;65(9):885–896.
  • Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol. 2007 June;50(1):1–26.
  • Barnett ND, Kaplan AM, Hopkin RJ, et al. Primary amoebic meningoencephalitis with Naegleria fowleri: clinical review. Pediatr Neurol. 1996 Oct;15(3):230–234.
  • Gharpure R, Bliton J, Goodman A, et al. Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by naegleria fowleri: a global review. Clin Infect Dis. 2020 May 5. DOI:https://doi.org/10.1093/cid/ciaa520
  • Maciver SK, Pinero JE, Lorenzo-Morales J. Is Naegleria fowleri an emerging parasite? Trends Parasitol. 2020 Jan;36(1):19–28.
  • Siddiqui R, Khan NA. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges. PLoS Negl Trop Dis. 2014 Aug 8;(8):e3017. DOI:https://doi.org/10.1371/journal.pntd.0003017
  • Cos P, Vlietinck AJ, Berghe DV, et al. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006 July 19;106(3):290–302.
  • Egner U, Kratzschmar J, Kreft B, et al. The target discovery process. Chembiochem. 2005 Mar;6(3):468–479.
  • Seib KL, Dougan G, Rappuoli R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet. 2009 Oct;5(10):e1000612.
  • Sams-Dodd F. Target-based drug discovery: is something wrong? Drug Discov Today. 2005 Jan 15;10(2):139–147.
  • Muller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. Int Rev Cell Mol Biol. 2013;301:359–401.
  • Verkman AS. Drug discovery in academia. Am J Physiol Cell Physiol. 2004 Mar;286(3):C465–74.
  • Muller J, Hemphill A. Drug target identification in protozoan parasites. Expert Opin Drug Discov. 2016 Aug;11(8):815–824.
  • Debnath A, Calvet CM, Jennings G, et al. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis. 2017 Dec;11(12):e0006104.
  • Goswick SM, Brenner GM. Activities of therapeutic agents against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. J Parasitol. 2003 Aug;89(4):837–842.
  • Ondarza RN, Iturbe A, Hernandez E. In vitro antiproliferative effects of neuroleptics, antimycotics and antibiotics on the human pathogens Acanthamoeba polyphaga and Naegleria fowleri. Arch Med Res. 2006 Aug;37(6):723–729.
  • Tiewcharoen S, Junnu V, Chinabut P. In vitro effect of antifungal drugs on pathogenic Naegleria spp. Southeast Asian J Trop Med Public Health. 2002 Mar;33(1):38–41.
  • Tiewcharoen S, Junnu V, Suvoutho S. Effect of antifungal drugs on pathogenic Naegleria spp isolated from natural water sources. J Med Assoc Thai. 2003 Sept;86(9):876–882.
  • Colon BL, Rice CA, Guy RK, et al. Phenotypic screens reveal posaconazole as a rapidly acting amebicidal combination partner for treatment of primary amoebic meningoencephalitis. J Infect Dis. 2019 Mar 15;219(7):1095–1103.
  • Debnath A, Tunac JB, Galindo-Gomez S, et al. Corifungin, a new drug lead against Naegleria, identified from a high-throughput screen. Antimicrob Agents Chemother. 2012 Nov;56(11):5450–5457.
  • Rajendran K, Anwar A, Khan NA, et al. Brain-eating amoebae: silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against naegleria fowleri. ACS Chem Neurosci. 2017 Dec 20;8(12):2626–2630.
  • Anwar A, Mungroo MR, Khan S, et al. Novel azoles as antiparasitic remedies against brain-eating amoebae. Antibiotics (Basel). 2020 Apr 17;9:4.
  • Mungroo MR, Shahbaz MS, Anwar A, et al. Aryl quinazolinone derivatives as novel therapeutic agents against brain-eating amoebae. ACS Chem Neurosci. 2020 Aug 19;11(16):2438–2449.
  • Zhou W, Debnath A, Jennings G, et al. Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri. PLoS Pathog. 2018 Sept;14(9):e1007245.
  • Thomson S, Rice CA, Zhang T, et al. Characterisation of sterol biosynthesis and validation of 14alpha-demethylase as a drug target in Acanthamoeba. Sci Rep. 2017 Aug 15;7(1):8247.
  • Zhou W, Warrilow AGS, Thomas CD, et al. Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochim Biophys Acta Mol Cell Biol Lipids. 2018 July 22;1863(10):1164–1178.
  • Shi D, Chahal KK, Oto P, et al. Identification of four amoebicidal nontoxic compounds by a molecular docking screen of Naegleria fowleri sterol delta8-delta7-isomerase and phenotypic assays. ACS Infect Dis. 2019 Dec 13;5(12):2029–2038.
  • Hahn HJ, Debnath A. In vitro evaluation of farnesyltransferase inhibitor and its effect in combination with 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor against Naegleria fowleri. Pathogens. 2020 Aug 22;9(9):689.
  • Hahn HJ, Abagyan R, Podust LM, et al. HMG-CoA reductase inhibitors as drug leads against Naegleria fowleri. ACS Chem Neurosci. 2020 Oct 7;11(19):3089–3096.
  • Rizo-Liendo A, Sifaoui I, Reyes-Batlle M, et al. In vitro activity of statins against Naegleria fowleri. Pathogens. 2019 Aug 8;8(3):122.
  • Sarink MJ, Tielens AGM, Verbon A, et al. Inhibition of fatty acid oxidation as a new target to treat primary amoebic meningoencephalitis. Antimicrob Agents Chemother. 2020 July 22;64(8). DOI:https://doi.org/10.1128/AAC.00344-20
  • Debnath A, Nelson AT, Silva-Olivares A, et al. In vitro efficacy of Ebselen and BAY 11-7082 against Naegleria fowleri. Front Microbiol. 2018;9:414.
  • Rice CA, Colon BL, Alp M, et al. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob Agents Chemother. 2015 Apr;59(4):2037–2044.
  • Goswick SM, Brenner GM. Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother. 2003 Feb;47(2):524–528.
  • Kim JH, Lee YJ, Sohn HJ, et al. Therapeutic effect of rokitamycin in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Int J Antimicrob Agents. 2008 Nov;32(5):411–417.
  • Rice CA, Troth EV, Russell AC, et al. Discovery of anti-amoebic inhibitors from screening the MMV pandemic response box on balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens. 2020 June 16;9(6). DOI:https://doi.org/10.3390/pathogens9060476
  • Kangussu-Marcolino MM, Ehrenkaufer GM, Chen E, et al. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist. 2019 Dec;11:80–94.
  • Peroutka-Bigus N, Bellaire BH. Antiparasitic activity of auranofin against pathogenic Naegleria fowleri. J Eukaryot Microbiol. 2019 July;66(4):684–688.
  • Escrig JI, Hahn HJ, Debnath A. Activity of auranofin against multiple genotypes of Naegleria fowleri and its synergistic effect with amphotericin B in vitro. ACS Chem Neurosci. 2020 Aug 19;11(16):2464–2471.
  • Manhas R, Gowri VS, Madhubala R. Leishmania donovani encodes a functional selenocysteinyl-tRNA synthase. J Biol Chem. 2016 Jan 15;291(3):1203–1220.
  • Angelucci F, Sayed AA, Williams DL, et al. Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J Biol Chem. 2009 Oct 16;284(42):28977–28985.
  • Caroli A, Simeoni S, Lepore R, et al. Investigation of a potential mechanism for the inhibition of SmTGR by Auranofin and its implications for Plasmodium falciparum inhibition. Biochem Biophys Res Commun. 2012 Jan 6;417(1):576–581.
  • Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids. 2012 Feb;42(2–3):803–811.
  • Prast-Nielsen S, Huang HH, Williams DL. Thioredoxin glutathione reductase: its role in redox biology and potential as a target for drugs against neglected diseases. Biochim Biophys Acta. 2011 Dec;1810(12):1262–1271.
  • Sannella AR, Casini A, Gabbiani C, et al. New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: mechanistic and pharmacological implications. FEBS Lett. 2008 Mar 19;582(6):844–847.
  • Ndjonka D, Rapado LN, Silber AM, et al. Natural products as a source for treating neglected parasitic diseases. Int J Mol Sci. 2013 Feb 6;14(2):3395–3439.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012 Mar 23;75(3):311–335.
  • Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules. 2012 Oct 31;17(11):12771–12791.
  • Belofsky G, Carreno R, Goswick SM, et al. Activity of isoflavans of Dalea aurea (Fabaceae) against the opportunistic ameba naegleria fowleri. Planta Med. 2006 Mar;72(4):383–386.
  • Bashyal B, Li L, Bains T, et al. Larrea tridentata: a novel source for anti-parasitic agents active against Entamoeba histolytica, Giardia lamblia and Naegleria fowleri. PLoS Negl Trop Dis. 2017 Aug;11(8):e0005832.
  • Rajendran K, Anwar A, Khan NA, et al. Trans-cinnamic acid conjugated gold nanoparticles as potent therapeutics against brain-eating amoeba Naegleria fowleri. ACS Chem Neurosci. 2019 June 19;10(6):2692–2696.
  • Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007 Nov-Dec;4(6):807–818.
  • Mungroo MR, Anwar A, Khan NA, et al. Gold-conjugated curcumin as a novel therapeutic agent against brain-eating amoebae. ACS Omega. 2020 June 2;5(21):12467–12475.
  • Duma RJ, Finley R. In vitro susceptibility of pathogenic Naegleria and Acanthamoeba speicies to a variety of therapeutic agents. Antimicrob Agents Chemother. 1976 Aug;10(2):370–376.
  • Schuster FL, Guglielmo BJ, Visvesvara GS. In-vitro activity of miltefosine and voriconazole on clinical isolates of free-living amebas: Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri. J Eukaryot Microbiol. 2006 Mar-Apr;53(2):121–126.
  • Seidel JS, Harmatz P, Visvesvara GS, et al. Successful treatment of primary amebic meningoencephalitis [Case Reports]. N Engl J Med. 1982 Feb 11;306(6):346–348.
  • Soltow SM, Brenner GM. Synergistic activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother. 2007 Jan;51(1):23–27.
  • Schuster FL, Mandel N. Phenothiazine compounds inhibit in vitro growth of pathogenic free-living amoebae. Antimicrob Agents Chemother. 1984 Jan;25(1):109–112.
  • Kim JH, Jung SY, Lee YJ, et al. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri. Antimicrob Agents Chemother. 2008 Nov;52(11):4010–4016.
  • DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016 May;47:20–33.
  • Tambuyzer E, Vandendriessche B, Austin CP, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020 Feb;19(2):93–111.
  • Ursu O, Holmes J, Bologa CG, et al. DrugCentral 2018: an update. Nucleic Acids Res. 2019 Jan 8;47(D1):D963–D970.
  • Herbst R, Ott C, Jacobs T, et al. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem. 2002 June 21;277(25):22353–22360.
  • Lee J, Kim JH, Sohn HJ, et al. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties. Parasitol Res. 2014 Aug;113(8):2765–2776.
  • Zyserman I, Mondal D, Sarabia F, et al. Identification of cysteine protease inhibitors as new drug leads against Naegleria fowleri. Exp Parasitol. 2018 May;188:36–41.
  • Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011 July;10(7):507–519.
  • Ong TYY, Khan NA, Siddiqui R. Brain-eating amoebae: predilection sites in the brain and disease outcome. J Clin Microbiol. 2017 July;55(7):1989–1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.