467
Views
3
CrossRef citations to date
0
Altmetric
Review

Molecular detections of coronavirus: current and emerging methodologies

, , &
Pages 199-210 | Received 03 Apr 2021, Accepted 28 Jun 2021, Published online: 21 Jul 2021

References

  • Chen B, Tian EK, He B, et al. Overview of lethal human coronaviruses. Signal Transduct Target Ther. 2020;5(1):89• Outstanding reference work regarding lethal human coronaviruses and syndrome.
  • Meo SA, Alhowikan AM, Al-Khlaiwi T, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012–2019.
  • Nassar MS, Bakhrebah MA, Meo SA, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci. 2018;22(15):4956–4961.
  • Dong XCY, Lu X, Zhang J, et al. Gao Y Eleven faces of coronavirus disease 2019. Allergy. 2020;75(7):1699–1709.• Insightful work regarding clinical cases of COVID-19.
  • Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20(9):e238–e244.
  • Baj J, Karakuła-Juchnowicz H, Teresiński G, et al. COVID-19: specific and Non-Specific clinical manifestations and symptoms: the current state of knowledge. J Clin Med. 2020;9(6):1753.
  • Demeke Teklemariam A, Samaddar M, Alharbi MG, et al. Biosensor and molecular-based methods for the detection of human coronaviruses: a review. Mol Cell Probes. 2020;54:101662.
  • Taha BA, Al Mashhadany Y, Hafiz Mokhtar MH, et al. An analysis review of detection Coronavirus disease 2019 (COVID-19) based on biosensor application. Sensors (Basel). 2020;20(23):6764.
  • Kakhki RK, Kakhki MK, Neshani A. COVID-19 target: a specific target for novel coronavirus detection. Gene Rep. 2020;20:100740.
  • Fang Y, Zhang H, Xie J, et al. Sensitivity of Chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296(2):e115–e117.
  • Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in False-Negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4):262–267.
  • Long C, Xu H, Shen Q, et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:108961.
  • Bwire GM, Majigo MV, Njiro BJ, et al. Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: a systematic review and meta-analysis. J Med Virol. 2021;93(2):719–725.
  • Zhang H, Chen M, Zhang Y, et al. The Yield and Consistency of the Detection of SARS-CoV-2 in Multiple Respiratory Specimens. Open Forum Infect Dis. 2020;7(10):ofaa379.
  • Tong Y, Bao A, Chen H, et al. Necessity for detection of SARS-CoV-2 RNA in multiple types of specimens for the discharge of the patients with COVID-19. J Transl Med. 2020;18(1):411.
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.•• This is a classic, well done paper on LAMP as DNA detection method.
  • Tan B, Zhou Y, Svitova T, et al. Objective quantification of fluorescence intensity on the corneal surface using a modified slit-lamp technique. Eye Contact Lens. 2013;39(3):239–246.
  • Goldenthal KL, Hedman K, Chen JW, et al. Pre-lysosomal divergence of alpha 2-macroglobulin and transferrin: a kinetic study using a monoclonal antibody against a lysosomal membrane glycoprotein (LAMP-1). J Histochem Cytochem. 1988;36(4):391–400.
  • Shirato K, Semba S, El-Kafrawy SA, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the middle east respiratory syndrome coronavirus. J Virol Methods. 2018;258(41–48):41–48.
  • Huang P, Wang H, Cao Z, et al. A rapid and specific assay for the detection of MERS-CoV. Front Microbiol. 2018;9(1101). DOI:10.3389/fmicb.2018.01101.
  • Abdelwahab M, Loa CC, Wu CC, et al. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus. J Virol Methods. 2015;217(36–41):36–41.
  • Wong YP, Othman S, Lau YL, et al. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol. 2018;124(3):626–643.
  • Dhama K, Karthik K, Chakraborty S, et al. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak J Biol Sci. 2014;17(2):151–166.
  • Karthik K, Rathore R, Thomas P, et al. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX. 2014;1(137–143):137–143.
  • Augustine R, Hasan A, Das S, et al. Loop-Mediated Isothermal Amplification (LAMP): a Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology (Basel). 2020;9(8):182.•• This work regarding coronavirus detection by LAMP, especially for COVID-19.
  • Harrington A, Cox B, Snowdon J, et al. Comparison of abbott ID now and abbott m2000 methods for the detection of SARS-CoV-2 from Nasopharyngeal and nasal swabs from symptomatic patients. J Clin Microbiol. 2020;58(8). DOI:10.1128/JCM.00798-20.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
  • Guk K, Keem JO, Hwang SG, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens Bioelectron. 2017;95:67–71.
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–444.
  • Staals RH, Zhu Y, Taylor DW, et al. RNA targeting by the type III-A CRISPR-Cas Csm complex of thermus thermophilus. Mol Cell. 2014;56(4):518–530.
  • Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362(6416):839–842.
  • Patchsung M, Jantarug K, Pattama A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020;4(12):1140–1149.
  • Joung J, Ladha A, Saito M, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020. DOI: 10.1101/2020.05.04.20091231.
  • Broughton JP, Deng X, Yu G, et al. Rapid detection of 2019 novel Coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. medRxiv. 2020. DOI: 10.1101/2020.03.06.20032334
  • Bhalla N, Jolly P, Formisano N, et al. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8.
  • Jurado-Sánchez B. Microscale and Nanoscale Biosensors. Biosensors (Basel). 2018;8(3):66.
  • Picuri JM, Frezza BM, Ghadiri MR. Universal translators for nucleic acid diagnosis. J Am Chem Soc. 2009;131(26):9368–9377.
  • Nesakumar N, Sethuraman S, Krishnan UM, et al. Cyclic voltammetric acetylcholinesterase biosensor for the detection of captan in apple samples with the aid of chemometrics. Anal Bioanal Chem. 2015;407(16):4863–4868.
  • Snir E, Amit E, Friedler A, et al. A highly sensitive square wave voltammetry based biosensor for kinase activity measurements. Biopolymers. 2015;104(5):515–520.
  • Fava EL, Silva TA, Prado TMD, et al. Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. Talanta. 2019;203:280–286.
  • Bahner N, Reich P, Frense D, et al. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem. 2018;410(5):1453–1462.
  • Dai Y, Molazemhosseini A, Liu CC. A Single-Use, in vitro biosensor for the detection of T-Tau protein, a biomarker of Neuro-degenerative disorders, in PBS and human serum using Differential Pulse Voltammetry (DPV). Biosensors (Basel). 2017;7(1):10.
  • Nguyen HH, Park J, Kang S, et al. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel). 2015;15(5):10481–10510.
  • Huang BH, Shen SS, Wei N, et al. Fluorescence biosensor based on silicon quantum dots and 5,5ʹ-dithiobis-(2-nitrobenzoic acid) for thiols in living cells. Spectrochim Acta A Mol Biomol Spectrosc. 2020;229:117972.
  • Kim KW, Song J, Kee JS, et al. Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source. Biosens Bioelectron. 2013;46:15–21.
  • Wu TH, Chang CC, Vaillant J, et al. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. Lab Chip. 2016;16(23):4527–4533.
  • Roh C, Jo SK. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J Chem Technol Biotechnol. 2011;86(12):1475–1479.
  • Alafeef M, Dighe K, Moitra P, et al. Ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano. 2020;14(12):17028–17045.
  • Sharma A, Tiwari S, Deb MK, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents. 2020;56(2):106054.
  • Cerutti F, Burdino E, Milia MG, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J Clin Virol. 2020;132:104654.
  • Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A. 2004;101(39):14036–14039.
  • Huang X, Xu D, Chen J, et al. Smartphone-based analytical biosensors. Analyst. 2018;143(22):5339–5351.
  • Lin J, Su G, Su W, et al. [Progress in digital PCR technology and application]. Sheng Wu Gong Cheng Xue Bao. 2017;33(2):170–177.
  • Feng Z, Shu Y. An Overview of Digital PCR. Bing Du Xue Bao. 2017;33(1):103–107.
  • Suo T, Liu X, Feng J, et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect. 2020;9(1):1259–1268.
  • Dang Y, Liu N, Tan C, et al. Comparison of qualitative and quantitative analyses of COVID-19 clinical samples. Clin Chim Acta. 2020;510(613–616):613–616.
  • Sun B, Feng Y, Mo X, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):940–948.
  • Kinloch NN, Ritchie G, Brumme CJ, et al. Suboptimal biological sampling as a probable cause of False-Negative COVID-19 diagnostic test results. J Infect Dis. 2020;222(6):899–902.
  • Hu X, Zhu L, Luo Y, et al. Evaluation of the clinical performance of single-, dual-, and triple-target SARS-CoV-2 RT-qPCR methods. Clin Chim Acta. 2020;511:143–148.
  • Alteri C, Cento V, Antonello M, et al. Detection and quantification of SARS-CoV-2 by droplet digital PCR in real-time PCR negative nasopharyngeal swabs from suspected COVID-19 patients. PLoS One. 2020;15(9):e0236311.
  • Dong L, Wang X, Wang S, et al. Interlaboratory assessment of droplet digital PCR for quantification of BRAF V600E mutation using a novel DNA reference material. Talanta. 2020;207:120293.
  • Pinheiro LB, O’Brien H, Druce J, et al. Interlaboratory reproducibility of droplet digital polymerase chain reaction using a new DNA reference material format. Anal Chem. 2017;89(21):11243–11251.
  • Falzone L, Musso N, Gattuso G, et al. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med. 2020;46(3):957–964.
  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–351.
  • Wang M, Fu A, Hu B, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 2020;16(32):e2002169.
  • Liu DX, Fung TS, Chong KK, et al. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 2014;109:97–109.
  • Astuti I. Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407–412.
  • Yolken RH. Enzyme-linked immunosorbent assay (ELISA): a practical tool for rapid diagnosis of viruses and other infectious agents. Yale J Biol Med. 1980;53(1):85–92.
  • Qian C, Zhou M, Cheng F, et al. Development and multicenter performance evaluation of fully automated SARS-CoV-2 IgM and IgG immunoassays. Clin Chem Lab Med. 2020;58(9):1601–1607.
  • Chen Z, Zhang Z, Zhai X, et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using Lanthanide-Doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92(10):7226–7231.
  • Ye H, Liu Y, Zhan L, et al. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics. 2020;10(10):4359–4373.
  • Haymond A, Mueller C, Steinberg H, et al. Clinical utility of a highly sensitive lateral flow immunoassay as determined by titer analysis for the detection of anti-SARS-CoV-2 antibodies at the point-of-care. medRxiv. 2020. DOI: 10.1101/2020.07.30.20163824•• This work regarding detection of anti-SARS-CoV-2 antibodies by LFA.
  • Xie J, Ding C, Li J, et al. Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J Med Virol. 2020;92(10):2004–2010.
  • Ong DSY, De Man SJ, Lindeboom FA, et al. Comparison of diagnostic accuracies of rapid serological tests and ELISA to molecular diagnostics in patients with suspected coronavirus disease 2019 presenting to the hospital. Clin Microbiol Infect. 2020;26(8):1094.e1097–1094.e1010.
  • Petherick A. Developing antibody tests for SARS-CoV-2. Lancet. 2020;395(10230):1101–1102.
  • Sunwoo HH, Palaniyappan A, Ganguly A, et al. Quantitative and sensitive detection of the SARS-CoV spike protein using bispecific monoclonal antibody-based enzyme-linked immunoassay. J Virol Methods. 2013;187(1):72–78.
  • Guo ZM, Lu JH, Han WY, et al. Comparison of effectiveness of whole viral, N and N199 proteins by ELISA for the rapid diagnosis of severe acute respiratory syndrome coronavirus. Chin Med J (Engl). 2007;120(24):2195–2199.
  • Shang B, Wang XY, Yuan JW, et al. Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochem Biophys Res Commun. 2005;336(1):110–117.
  • Lee JH, Choi M, Jung Y, et al. A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosens Bioelectron. 2021;171:112715.
  • Hingrat QL, Visseaux B, Laouenan C, et al. Detection of SARS-CoV-2 N-antigen in blood during acute COVID-19 provides a sensitive new marker and new testing alternatives. Clin Microbiol Infect. 2020;27(5):789.e1-789.e5.
  • Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–5142.
  • Mavrikou S, Moschopoulou G, Tsekouras V, et al. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors (Basel). 2020;20(11):11.
  • Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. Chem Eng J. 2020;420:127575.
  • Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron. 2020;173:112777.
  • New ML. At-Home Antibody Test for Detecting, Tracking COVID-19. IEEE Pulse. 2020;11(5):28–31.• This work regarding detection of anti-SARS-CoV-2 antibodies by at-home test.
  • Proske D, Blank M, Buhmann R, et al. Aptamers--basic research, drug development, and clinical applications. Appl Microbiol Biotechnol. 2005;69(4):367–374.
  • Ahn DG, Jeon IJ, Kim JD, et al. RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein. Analyst. 2009;134(9):1896–1901.
  • Cho SJ, Woo HM, Kim KS, et al. Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng. 2011;112(6):535–540.
  • Zhang L, Fang X, Liu X, et al. Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers. Chem Commun (Camb). 2020;56(70):10235–10238.
  • Song Y, Song J, Wei X, et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal Chem. 2020;92(14):9895–9900.
  • Chen Z, Wu Q, Chen J, et al. Method for detection of SARS-CoV-2 nucleocapsid protein. Virol Sin. 2020;35(3):351–354.
  • Parashar NC, Poddar J, Chakrabarti S, et al. Repurposing of SARS-CoV nucleocapsid protein specific nuclease resistant RNA aptamer for therapeutics against SARS-CoV-2. Infect Genet Evol. 2020;85:104497.
  • Ali MH, Elsherbiny ME, Emara M. Updates on Aptamer Research. Int J Mol Sci. 2019;20(10):2511.
  • Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24(5):941.
  • Toh SY, Citartan M, Gopinath SC, et al. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 2015;64:392–403.
  • Kuo CJ, Chi YH, Hsu JT, et al. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun. 2004;318(4):862–867.
  • Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30(8):678–692.
  • Fu L, Ye F, Feng Y, et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun. 2020;11(1):4417.
  • van de Plassche MAT, Barniol-Xicota M, Verhelst SHL. Peptidyl acyloxymethyl ketones as activity-based probes for the main protease of SARS-CoV-2*. Chembiochem. 2020;21(23):3383–3388.
  • Craney AR, Velu PD, Satlin MJ, et al. Comparison of two high-throughput reverse Transcription-PCR systems for the detection of severe acute respiratory syndrome Coronavirus 2. J Clin Microbiol. 2020;58(8):e00890-00820. DOI:10.1128/JCM.00890-20.
  • Karp DG, Cuda D, Tandel D, et al. Sensitive and specific detection of SARS-CoV-2 antibodies using a high-throughput, fully automated liquid-handling robotic system. SLAS Technol. 2020;25(6):545–552.
  • Xiao AT, Tong YX, Zhang S. False negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. J Med Virol. 2020;92(10):1755–1756.
  • Van Elslande J, Houben E, Depypere M, et al. Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients. Clin Microbiol Infect. 2020;26(8):1082–1087.
  • The U. S. Food and drug administration. In vitro diagnostics EUAs - molecular diagnostic tests for SARS-CoV-2. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-2, (2021-05-18).
  • The U. S. Food and drug administration. In vitro diagnostics EUAs - Antigen diagnostic tests for SARS-CoV-2. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2, (2021-05-18).
  • Meurant R, Ardakani A. New study identifies top-performing Point-of-Care COVID-19 Tests. https://www.nsf.org/news/new-study-identifies-top-performing-point-care-covid-19-tests, (2021-05-18).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.