437
Views
3
CrossRef citations to date
0
Altmetric
Review

Clostridioides difficile infection: an emerging zoonosis?

, , , , &
Pages 1543-1552 | Received 09 Apr 2021, Accepted 10 Aug 2021, Published online: 23 Aug 2021

References

  • Bagdasarian N, Rao K, Malani PN. Diagnosis and treatment of Clostridium difficile in adults. JAMA. 2015;313(4):398–408.
  • Crobach MJT, Planche T, Eckert C, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22(Suppl 4):S63–81.
  • Lee JC, Hung YP, Tsai BY, et al. Severe Clostridium difficile infections in intensive care units: diverse clinical presentations. J Microbiol Immunol Infect. Internet]. 2020 [cited 2021 Feb 7]; https://doi.org/10.1016/j.jmii.2020.07.012.
  • Bartlett JG, Gerding DN. Clinical recognition and diagnosis of Clostridium difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S12–18.
  • Kwok CS, Arthur AK, Anibueze CI, et al. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol. 2012;107(7):1011–1019.
  • Hung YP, Ko WC, Chou PH, et al., Proton-Pump inhibitor exposure aggravates Clostridium difficile–Associated colitis: evidence from a mouse model. J Infect Dis. 212(4): 654–663.
  • Tariq R, Singh S, Gupta A, et al. Association of gastric acid suppression with recurrent Clostridium difficile infection. JAMA Intern Med. 2017;177(6):784–791.
  • Hung YP, Lee JC, Tsai BY, et al. Risk factors of Clostridium difficile-associated diarrhea in hospitalized adults: vary by hospitalized duration. J Microbiol Immunol Infect. 2021;54(2):276–283.
  • Davies K, Lawrence J, Berry C, et al. Risk factors for primary Clostridium difficile infection; results from the observational study of risk factors for Clostridium difficile infection in hospitalized patients with infective diarrhea (ORCHID). Front Public Health. 2020;8:293.
  • Chang TH, Hsu WY, Yang TI, et al. Increased age and proton pump inhibitors are associated with severe Clostridium difficile infections in children. J Microbiol Immunol Infect. 2020;53(4):578–584.
  • Ofori E, Ramai D, Dhawan M, et al. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect. 2018;99(4):436–442.
  • Khanna S, Pardi DS, Aronson SL, et al., The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012;107(1): 89–95.
  • Tsai CS, Hung YP, Lee JC, et al., Community-onset Clostridium difficile infection at a tertiary medical center in southern Taiwan, 2007–2015. J Microbiol Immunol Infect. 2018;51(2): 243–250.
  • Viprey VF, Davis GL, Benson AD, et al. Key differences in diagnosis and patient populations between community and in-patient Clostridioides difficile Infections (CDI): results from combatting bacterial resistance in Europe CDI (COMBACTE-CDI). [Cited 2021 Aug 21]. Available from: https://papers.ssrn.com/abstract=3812436.
  • Chitnis AS, Holzbauer SM, Belflower RM, et al., Epidemiology of Community-Associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med. 2013;173(14): 1359–1367.
  • Songer JG, Anderson MA. Clostridium difficile: an important pathogen of food animals. Anaerobe. 2006;12(1):1–4.
  • Gould LH, Limbago B. Clostridium difficile in food and domestic animals: a new foodborne pathogen? Clin Infect Dis. 2010;51(5):577–582.
  • Marks SL, Kather EJ, Kass PH, et al. Genotypic and phenotypic characterization of Clostridium perfringens and Clostridium difficile in diarrheic and healthy dogs. J Vet Intern Med. 2002;16(5):533–540.
  • Clooten J, Kruth S, Arroyo L, et al. Prevalence and risk factors for Clostridium difficile colonization in dogs and cats hospitalized in an intensive care unit. Vet Microbiol. 2008;129(1–2):209–214.
  • Perrin J, Buogo C, Gallusser A, et al. Intestinal carriage of Clostridium difficile in neonate dogs. Zentralblatt Vet. 1993;40:222–226.
  • Struble AL, Tang YJ, Kass PH, et al. Fecal shedding of clostridium difficile in dogs: a period prevalence survey in a veterinary medical teaching hospital. J Vet Diagn Invest. 1994;6(3):342–347.
  • Madewell BR, Bea JK, Kraegel SA, et al. Clostridium difficile: a survey of fecal carriage in cats in a veterinary medical teaching hospital. J Vet Diagn Invest. 1999;11(1):50–54.
  • Weese JS, Staempfli HR, Prescott JF, et al. The roles of clostridium difficile and enterotoxigenic clostridium perfringens in diarrhea in dogs. J Vet Intern Med. 2001;15(4):374–378.
  • Weese JS, Finley R, Reid-Smith RR, et al. Evaluation of Clostridium difficile in dogs and the household environment. Epidemiol Infect. 2010;138(8):1100–1104.
  • Schneeberg A, Rupnik M, Neubauer H, et al. Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe. 2012;18(5):484–488.
  • Koene MGJ, Mevius D, Wagenaar JA, et al. Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect. 2012;18(8):778–784.
  • Wetterwik K-J, Trowald-Wigh G, Fernström -L-L, et al. Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand. 2013;55(1):23.
  • Hussain I, Sharma RK, Borah P, et al. Isolation and characterization of Clostridium difficile from pet dogs in Assam, India. Anaerobe. 2015;36:9–13.
  • Alam MJ, McPherson J, Miranda J, et al. Molecular epidemiology of Clostridioides difficile in domestic dogs and zoo animals. Anaerobe. 2019;59:107–111.
  • Berry ASF, Kelly BJ, Barnhart D, et al. Gut microbiota features associated with Clostridioides difficile colonization in puppies. PloS One. 2019;14(8):e0215497.
  • Weese JS, Mshelbwala PP, Lohr F. Clostridium difficile shedding by healthy dogs in Nigeria and Malawi. Zoonoses Public Health. 2019;66(6):618–621.
  • Viegas FM, Ramos CP, Xavier RGC, et al. Fecal shedding of Salmonella spp., Clostridium perfringens, and Clostridioides difficile in dogs fed raw meat-based diets in Brazil and their owners’ motivation. PloS One. 2020;15(4):e0231275.
  • Busch K, Suchodolski JS, Kühner KA, et al. Clostridium perfringens enterotoxin and Clostridium difficile toxin A/B do not play a role in acute haemorrhagic diarrhoea syndrome in dogs. Vet Rec. 2015;176(10):253.
  • Rabold D, Espelage W, Abu Sin M, et al. The zoonotic potential of Clostridium difficile from small companion animals and their owners. PLoS One. 2018;13(2):e0193411.
  • Diniz AN, Coura FM, Rupnik M, et al. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs. Anaerobe. 2018;49:58–62.
  • Orden C, Blanco JL, Álvarez-Pérez S, et al. Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe. 2017;43:78–81.
  • Lefebvre SL, Reid-Smith RJ, Waltner-Toews D, et al. Incidence of acquisition of methicillin-resistant Staphylococcus aureus, Clostridium difficile, and other health-care–associated pathogens by dogs that participate in animal-assisted interventions. J Am Vet Med Assoc. 2009;234(11):1404–1417.
  • Lefebvre SL, Reid-Smith R, Boerlin P, et al. Evaluation of the risks of shedding Salmonellae and other potential pathogens by therapy dogs fed raw diets in Ontario and Alberta. Zoonoses Public Health. 2008;55(8–10):470–480.
  • Andrés-Lasheras S, Martín-Burriel I, Mainar-Jaime RC, et al. Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet Res. 2018;14(1):77.
  • Álvarez-Pérez S, Blanco JL, Harmanus C, et al. Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe. 2017;48:47–55.
  • Loo VG, Brassard P, Miller MA. Household Transmission of Clostridium difficile to family members and domestic pets. Infect Control Hosp Epidemiol. 2016;37(11):1342–1348.
  • Janezic S, Mlakar S, Rupnik M. Dissemination of Clostridium difficile spores between environment and households: dog paws and shoes. Zoonoses Public Health. 2018;65(6):669–674.
  • Chan G, Farzan A, DeLay J, et al. A retrospective study on the etiological diagnoses of diarrhea in neonatal piglets in Ontario, Canada, between 2001 and 2010. Can J Vet Res. 2013;77:254–260.
  • Yaeger M, Funk N, Hoffman L. A survey of agents associated with neonatal diarrhea in Iowa swine including clostridium difficile and porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest. 2002;14(4):281–287.
  • Arruda PHE, Madson DM, Ramirez A, et al. Effect of age, dose and antibiotic therapy on the development of Clostridium difficile infection in neonatal piglets. Anaerobe. 2013;22:104–110.
  • Weese JS. Clostridium (Clostridioides) difficile in animals. J Vet Diagn Invest. 2020;32(2):213–221.
  • Songer JG, Uzal FA. Clostridial enteric infections in pigs. J Vet Diagn Invest. 2005;17(6):528–536.
  • Hopman NEM, Keessen EC, Harmanus C, et al. Acquisition of Clostridium difficile by piglets. Vet Microbiol. 2011;149(1–2):186–192.
  • Hawken P, Weese JS, Friendship R, et al. Longitudinal study of Clostridium difficile and methicillin-resistant Staphylococcus aureus associated with pigs from weaning through to the end of processing. J Food Prot. 2013;76(4):624–630.
  • Schneeberg A, Neubauer H, Schmoock G, et al. Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol. 2013;51(11):3796–3803.
  • Knight DR, Squire MM, Riley TV. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol. 2015;81(1):119–123.
  • Krutova M, Zouharova M, Matejkova J, et al. The emergence of Clostridium difficile PCR ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int J Med Microbiol. 2018;308(7):770–775.
  • Kim HY, Cho A, Kim JW, et al. High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Anaerobe. 2018;51:42–46.
  • Asai T, Usui M, Hiki M, et al. Clostridium difficile isolated from the fecal contents of swine in Japan. J Vet Med Sci. 2013;75(4):539–541.
  • Cho A, Byun JW, Kim JW, et al. Low prevalence of Clostridium difficile in slaughter pigs in Korea. J Food Prot. 2015;78(5):1034–1036.
  • Rodriguez C, Avesani V, Van Broeck J, et al. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol. 2013;166(2):256–262.
  • Stein K, Egan S, Lynch H, et al. PCR-ribotype distribution of Clostridium difficile in Irish pigs. Anaerobe. 2017;48:237–241.
  • Weese JS, Wakeford T, Reid-Smith R, et al. Longitudinal investigation of Clostridium difficile shedding in piglets. Anaerobe. 2010;16(5):501–504.
  • Keessen EC, Donswijk CJ, Hol SP, et al. Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res. 2011;111(8):1027–1032.
  • Burt SA, Siemeling L, Kuijper EJ, et al. Vermin on pig farms are vectors for Clostridium difficile PCR ribotypes 078 and 045. Vet Microbiol. 2012;160(1–2):256–258.
  • Squire MM, Carter GP, Mackin KE, et al. Novel molecular type of Clostridium difficile in neonatal pigs, Western Australia. Emerg Infect Dis. 2013;19(5):790–792.
  • Wu YC, Lee JJ, Tsai BY, et al. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan. Int J Med Microbiol. 2016;306(2):115–122.
  • Tsai BY, Ko WC, Chen TH, et al. Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe. 2016;41:125–130.
  • Wu YC, Chen CM, Kuo CJ, et al. Prevalence and molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork, and humans in Taiwan. Int J Food Microbiol. 2017;242:37–44.
  • Rodriguez-Palacios A, Stämpfli HR, Duffield T, et al. Clostridium difficile PCR Ribotypes in Calves, Canada. Emerg Infect Dis. 2006;12(11):1730–1736.
  • Hammitt MC, Bueschel DM, Keel MK, et al. A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol. 2008;127(3–4):343–352.
  • Rodriguez-Palacios A, Stämpfli HR, Stalker M, et al. Natural and experimental infection of neonatal calves with Clostridium difficile. Vet Microbiol. 2007;124(1–2):166–172.
  • Rodriguez-Palacios A, Pickworth C, Loerch S, et al. Transient fecal shedding and limited animal-to-animal transmission of Clostridium difficile by naturally infected finishing feedlot cattle. Appl Environ Microbiol. 2011;77(10):3391–3397.
  • Zidaric V, Pardon B, Dos Vultos T, et al. Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol. 2012;78(24):8515–8522.
  • Bandelj P, Harmanus C, Blagus R, et al. Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus variable-number tandem-repeat analysis. BMC Vet Res. 2018;14:298.
  • Costa MC, Stämpfli HR, Arroyo LG, et al. Epidemiology of Clostridium difficile on a veal farm: prevalence, molecular characterization and tetracycline resistance. Vet Microbiol. 2011;152(3–4):379–384.
  • Knight DR, Thean S, Putsathit P, et al. Cross-sectional study reveals high prevalence of Clostridium difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol. 2013;79(8):2630–2635.
  • Bandelj P, Blagus R, Briski F, et al. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet Res. 2016;47(1):41.
  • Magistrali CF, Maresca C, Cucco L, et al. Prevalence and risk factors associated with Clostridium difficile shedding in veal calves in Italy. Anaerobe. 2015;33:42–47.
  • Rodriguez C, Taminiau B, Van Broeck J, et al. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe. 2012;18(6):621–625.
  • Kachrimanidou M, Tzika E, Filioussis G. Clostridioides (Clostridium) difficile in food-producing animals, horses and household pets: a comprehensive review. Microorganisms. 2019;7(12):667.
  • Houser BA, Soehnlen MK, Wolfgang DR, et al. Prevalence of Clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog Dis. 2012;9(1):32–36.
  • Knight DR, Putsathit P, Elliott B, et al. Contamination of Australian newborn calf carcasses at slaughter with Clostridium difficile. Clin Microbiol Infect. 2016;22(3):266.e1–7.
  • Hampikyan H, Bingol EB, Muratoglu K, et al. The prevalence of Clostridium difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Sci. 2018;139:120–124.
  • Avberšek J, Pirš T, Pate M, et al. Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe. 2014;28:163–167.
  • Rahimi E, Jalali M, Weese JS. Prevalence of Clostridium difficilein raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health. 2014;14(1):119.
  • Bakri M. Prevalence of Clostridium difficile in raw cow, sheep, and goat meat in Jazan, Saudi Arabia. Saudi J Biol Sci. 2018;25(4):783–785.
  • Båverud V, Gustafsson A, Franklin A, et al. Clostridium difficile associated with acute colitis in mature horses treated with antibiotics. Equine Vet J. 1997;29(4):279–284.
  • Weese JS, Staempfli HR, Prescott JF. A prospective study of the roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet J. 2001;33(4):403–409.
  • Arroyo LG, Weese JS, Staempfli HR. Experimental Clostridium difficile enterocolitis in foals. J Vet Intern Med. 2004;18(5):734–738.
  • Arroyo LG, Stämpfli HR, Weese JS. Potential role of Clostridium difficile as a cause of duodenitis-proximal jejunitis in horses. J Med Microbiol. 2006;55(5):605–608.
  • Båverud V, Gustafsson A, Franklin A, et al. Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J. 2003;35(5):465–471.
  • Schoster A, Staempfli HR, Abrahams M, et al. Effect of a probiotic on prevention of diarrhea and Clostridium difficile and Clostridium perfringens shedding in foals. J Vet Intern Med. 2015;29:925–931.
  • Medina-Torres CE, Weese JS, Staempfli HR. Prevalence of Clostridium difficile in horses. Vet Microbiol. 2011;152(1–2):212–215.
  • Schoster A, Arroyo LG, Staempfli HR, et al. Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses. BMC Vet Res. 2012;8(1):94.
  • Schoster A, Staempfli HR, Arroyo LG, et al. Longitudinal study of Clostridium difficile and antimicrobial susceptibility of Escherichia coli in healthy horses in a community setting. Vet Microbiol. 2012;159(3–4):364–370.
  • Kecerova Z, Cizek A, Nyc O, et al. Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe. 2019;56:17–21.
  • Songer JG. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev. 1996;9:216–234.
  • Abdel-Glil MY, Thomas P, Schmoock G, et al. Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe. 2018;51:21–25.
  • Zidaric V, Zemljic M, Janezic S, et al. High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe. 2008;14(6):325–327.
  • Indra A, Lassnig H, Baliko N, et al. Clostridium difficile: ein neuer Zoonoseerreger? Wien Klin Wochenschr. 2009;121(3–4):91–95.
  • Simango C. Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans R Soc Trop Med Hyg. 2006;100(12):1146–1150.
  • Simango C, Mwakurudza S. Clostridium difficile in broiler chickens sold at market places in Zimbabwe and their antimicrobial susceptibility. Int J Food Microbiol. 2008;124(3):268–270.
  • Weese JS, Reid-Smith RJ, Avery BP, et al. Detection and characterization of Clostridium difficile in retail chicken. Lett Appl Microbiol. 2010;50(4):362–365.
  • Songer JG, Trinh HT, Killgore GE, et al. Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis. 2009;15(5):819–821.
  • Varshney JB, Very KJ, Williams JL, et al. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog Dis. 2014;11(10):822–829.
  • Bingol EB, Hampikyan H, Muratoglu K, et al. Characterisation and antibiotic susceptibility profile of Clostridioides (Clostridium) difficile isolated from chicken carcasses. J Vet Res. 2020;64(3):407–412.
  • Lee JY, Lee DY, Cho YS. Prevalence of Clostridium difficile isolated from various raw meats in Korea. Food Sci Biotechnol. 2018;27(3):883–889.
  • De Boer E, Zwartkruis-Nahuis A, Heuvelink AE, et al. Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol. 2011;144(3):561–564.
  • Hussain I, Borah P, Sharma RK, et al. Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Mol Cell Probes. 2016;30(5):306–311.
  • Razmyar J, Jamshidi A, Khanzadi S, et al. Toxigenic Clostridium difficile in retail packed chicken meat and broiler flocks in northeastern Iran. Iran J Vet Res. 2017;18:271–274.
  • Metcalf D, Avery BP, Janecko N, et al. Clostridium difficile in seafood and fish. Anaerobe. 2011;17(2):85–86.
  • Norman KN, Harvey RB, Andrews K, et al. Survey of Clostridium difficile in retail seafood in College Station, Texas. Food Addit Contam. 2014;31(6):1127–1129.
  • Tkalec V, Jamnikar-Ciglenecki U, Rupnik M, et al. Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Euro Surveill. 2020;25(6):1900479.
  • Moono P, Foster NF, Hampson DJ, et al. Clostridium difficile Infection in Production Animals and Avian Species: a Review. Foodborne Pathog Dis. 2016;13(12):647–655.
  • Norman KN, Harvey RB, Scott HM, et al. Varied prevalence of Clostridium difficile in an integrated swine operation. Anaerobe. 2009;15(6):256–260.
  • Krijger IM, Meerburg BG, Harmanus C, et al. Clostridium difficile in wild rodents and insectivores in the Netherlands. Lett Appl Microbiol. 2019;69(1):35–40.
  • de Oliveira CA, de Paula Gabardo M, Guedes RMC, et al. Rodents are carriers of Clostridioides difficile strains similar to those isolated from piglets. Anaerobe. 2018;51:61–63.
  • Susick EK, Putnam M, Bermudez DM, et al. Longitudinal study comparing the dynamics of Clostridium difficile in conventional and antimicrobial free pigs at farm and slaughter. Vet Microbiol. 2012;157(1–2):172–178.
  • Grzeskowiak L, Martínez-Vallespín B, Dadi TH, et al. Formula feeding predisposes neonatal piglets to Clostridium difficile gut infection. J Infect Dis. 2018;217(9):1442–1452.
  • Kim K, Pickering LK, DuPont HL, et al. In vitro and in vivo neutralizing activity of human colostrum and milk against purified toxins A and B of Clostridium difficile. J Infect Dis. 1984;150(1):57–62.
  • Tran H, Anderson CL, Bundy JW, et al. Effects of spray-dried porcine plasma on fecal microbiota in nursery pigs. J Anim Sci. 2018;96(3):1017–1031.
  • Norén T, Johansson K, Unemo M. Clostridium difficile PCR ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect. 2014;20(1):O2–O6.
  • Knetsch CW, Connor TR, Mutreja A, et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill. 2014;19(45):20954.
  • Knight DR, Squire MM, Collins DA, et al. Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol. 2016;7:2138.
  • Knetsch CW, Kumar N, Forster SC, et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol. 2018; 56(3). https://doi.org/10.1128/JCM.01384-17
  • Werner A, Mölling P, Fagerström A, et al. Whole genome sequencing of Clostridioides difficile PCR ribotype 046 suggests transmission between pigs and humans. PLoS One. 2020;15(12):e0244227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.