1,072
Views
4
CrossRef citations to date
0
Altmetric
Review

Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections

, , , &
Pages 1389-1400 | Received 29 Jun 2022, Accepted 22 Sep 2022, Published online: 28 Sep 2022

References

  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010 Mar;54(3):969–976.
  • Kazmierczak KM, BLM DJ, Stone GG, et al. Longitudinal analysis of ESBL and carbapenemase carriage among enterobacterales and pseudomonas aeruginosa isolates collected in Europe as part of the international network for optimal resistance monitoring (INFORM) global surveillance programme, 2013-17. J Antimicrob Chemother. 2020 May 1;75(5):1165–1173.
  • Süzük Yıldız S, Kaşkatepe B, Şimşek H, et al. High rate of colistin and fosfomycin resistance among carbapenemase-producing Enterobacteriaceae in Turkey. Acta Microbiol Immunol Hung. 2019 Mar 1;66(1):103–112.
  • Paul M, Bishara J, Levcovich A, et al. Effectiveness and safety of colistin: prospective comparative cohort study. J Antimicrob Chemother. 2010 May;65(5):1019–1027.
  • Tamma PD, Aitken SL, Bonomo RA, et al., Infectious diseases society of America guidance on the treatment of extended-spectrum β-lactamase producing enterobacterales (esbl-e), carbapenem-resistant enterobacterales (cre), and pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis. 2021;72(7): e169–e183.
  • Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clinical Microbiology and Infection. 2022;28(4):521–547.
  • McGovern PC, Wible M, El-Tahtawy A, et al. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int J Antimicrob Agents. 20132013/05/01/;41(5):463–467.
  • Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K pneumoniae: importance of combination therapy. Clin Infect Dis. 2012 Oct;55(7):943–950.
  • Tumbarello M, Trecarichi EM, De Rosa FG, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015 Jul;70(7):2133–2143.
  • Gutierrez-Gutierrez B, Salamanca E, de Cueto M, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017 Jul;17(7):726–734.
  • Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–2328.
  • Zarkotou O, Pournaras S, Tselioti P, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011 Dec;17(12):1798–1803.
  • Tzouvelekis LS, Markogiannakis A, Psichogiou M, et al. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012 Oct;25(4):682–707.
  • Isler B, Özer B, Çınar G, et al. Characteristics and outcomes of carbapenemase harbouring carbapenem-resistant Klebsiella spp. bloodstream infections: a multicentre prospective cohort study in an OXA-48 endemic setting. Eur J Clin Microbiol Infect Dis. 2022 Mar 17;41(5):841–847.
  • Shields RK, Potoski BA, Haidar G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2016 Dec 15;63(12):1615–1618.
  • Sousa A, Perez-Rodriguez MT, Soto A, et al. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA-48 carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018 Nov 1;73(11):3170–3175.
  • Kazmierczak KM, Tsuji M, Wise MG, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int J Antimicrob Agents. 2019 Feb;53(2):177–184.
  • Dobias J, Denervaud-Tendon V, Poirel L, et al. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017 Dec;36(12):2319–2327.
  • Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021 Feb;21(2):226–240.
  • Falcone M, Daikos GL, Tiseo G, et al. Clin Infect Dis. In: Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL- producing Enterobacterales. May, 2021;72(11):1871-1878.
  • Docquier JD, Calderone V, De Luca F, et al. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem Biol. 2009 May 29;16(5):540–547.
  • Poirel L, Héritier C, Tolün V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004 Jan;48(1):15–22.
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012 Jul;67(7):1597–1606.
  • Karlowsky JA, Lob SH, Kazmierczak KM, et al. in vitro activity of imipenem against carbapenemase-positive enterobacteriaceae isolates collected by the smart global surveillance program from 2008 to 2014. J Clin Microbiol. 2017 Jun;55(6):1638–1649.
  • Ahn C, Butt AA, Rivera JI, et al. OXA-48-producing Enterobacteriaceae causing bacteremia, United Arab Emirates. Int J Infect Dis. 2015 Jan;30:36–37.
  • Balkan II, Aygun G, Aydin S, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis. 2014 Sep;26:51–56.
  • Cuzon G, Ouanich J, Gondret R, et al. Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother. 2011 May;55(5):2420–2423.
  • Navarro-San Francisco C, Mora-Rillo M, Romero-Gomez MP, et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect. 2013 Feb;19(2):E72–9.
  • Carrër A, Poirel L, Eraksoy H, et al. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52(8):2950–2954.
  • Daikos GL, Carbapenemase-producing MA. Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect. 2011 Aug;17(8):1135–1141.
  • Anderson KF, Lonsway DR, Rasheed JK, et al. Evaluation of methods to identify the Klebsiella pneumoniae Carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007;45(8):2723.
  • Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011 Jun;55(6):3002–3004.
  • Mashni O, Nazer L, Le J. Critical Review of Double-Carbapenem Therapy for the Treatment of Carbapenemase-Producing Klebsiella pneumoniae. Ann Pharmacother. 2019 Jan;53(1):70–81.
  • Poirel L, Heritier C, Tolun V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004 Jan;48(1):15–22.
  • Erdem F, Abulaila A, Aktas Z, et al. In vitro evaluation of double carbapenem and colistin combinations against OXA-48, NDM carbapenemase-producing colistin-resistant Klebsiella pneumoniae strains. Antimicrob Resist Infect Control. 2020;9(1):70.
  • Onal U, Sipahi OR, Pullukcu H, et al. Retrospective evaluation of the patients with urinary tract infections due to carbapenemase producing Enterobacteriaceae. J Chemother. 2020 Feb;32(1):15–20.
  • Kazmierczak KM, Bradford PA, Stone GG, et al. in vitro activity of ceftazidime-avibactam and aztreonam-avibactam against oxa-48-carrying enterobacteriaceae isolated as part of the international network for optimal resistance monitoring (inform) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62(12):12.
  • Fleischmann WA, Greenwood-Quaintance KE, Patel R. In vitro activity of plazomicin compared to amikacin, gentamicin, and tobramycin against multidrug-resistant aerobic gram-negative Bacilli. Antimicrob Agents Chemother.2020;64(2):e01711-19 .
  • Livermore DM, Mushtaq S, Warner M, et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011 Jan;66(1):48–53.
  • Nazik H, Öngen B, Mete B, et al. Coexistence of blaOXA-48 and aac(6’)-Ib-cr genes in Klebsiella pneumoniae isolates from Istanbul, Turkey. J Int Med Res. 2011;39(5):1932–1940.
  • Galani I, Anagnostoulis G, Chatzikonstantinou M, et al. Emergence of Klebsiella pneumoniae co-producing OXA-48, CTX-M-15, and ArmA in Greece. Clin Microbiol Infect. 2016 Oct;22(10):898–899.
  • Gajamer VR, Bhattacharjee A, Paul D, et al. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J Glob Antimicrob Resist. 2020 Mar;20:197–203.
  • Satlin MJ, Kubin CJ, Blumenthal JS, et al. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob Agents Chemother. 2011 Dec;55(12):5893–5899.
  • van Duin D, Cober E, Richter SS, et al. Impact of therapy and strain type on outcomes in urinary tract infections caused by carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother. 2015 Apr;70(4):1203–1211.
  • Tzouvelekis LS, Markogiannakis A, Piperaki E, et al. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014 Sep;20(9):862–872.
  • Demirlenk YM, Gücer LS, Uçku D, et al. A meta-analysis for the role of aminoglycosides and tigecyclines in combined regimens against colistin- and carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Eur J Clin Microbiol Infect Dis. 2022 Mar;41(5):761-769.
  • Rodríguez-Avial I, Pena I, Picazo JJ, et al. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int J Antimicrob Agents. 2015 Dec;46(6):616–621.
  • McKinnell JA, Dwyer JP, Talbot GH, et al. Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae. N Engl J Med. 2019 Feb 21;380(8):791–793.
  • Galani I, Nafplioti K, Adamou P, et al. Nationwide epidemiology of carbapenem resistant Klebsiella pneumoniae isolates from Greek hospitals, with regards to plazomicin and aminoglycoside resistance. BMC Infect Dis. 2019 Feb 15;19(1):167.
  • Wagenlehner FME, Cloutier DJ, Komirenko AS, et al. Once-Daily Plazomicin for Complicated Urinary Tract Infections. N Engl J Med. 2019 Feb 21;380(8):729–740.
  • Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. 2018 Apr;18(4):391–400.
  • Kaye K, . Trial for the treatment of extensively drug-resistant gram-negative bacilli Accessed 27 09 2022 . https://clinicaltrials.gov/ct2/show/NCT01597973
  • Rojas LJ, Salim M, Cober E, et al. Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae: laboratory Detection and Impact on Mortality. Clin Infect Dis. 2017 Mar 15;64(6):711–718.
  • Giacobbe DR, Del Bono V, Trecarichi EM, et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 2015 Dec;21(12):1106.e1–8.
  • Aslan AT, Kırbaş E, Sancak B, et al. A retrospective observational cohort study of the clinical epidemiology of bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae in an OXA-48 endemic setting. Int J Antimicrob Agents. 2022 Apr;59(4):106554.
  • Aslan AT, Akova M. The role of colistin in the era of new β-lactam/β-lactamase inhibitor combinations. antibiotics (Basel). Antibiotics (Basel, Switzerland). 2022 Feb 20;11(2). DOI:10.3390/antibiotics11020277.
  • Oteo J, Ortega A, Bartolomé R, et al. Prospective multicenter study of carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob Agents Chemother. 2015;59(6):3406–3412.
  • Kazmierczak KM, BLM DJ, Stone GG, et al. In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European countries: INFORM global surveillance 2012-15. J Antimicrob Chemother. 2018 Oct 1;73(10):2782–2788.
  • Doi Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin Infect Dis. 2019;13(7):S565–s575.
  • Freire AT, Melnyk V, Kim MJ, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis. 2010 Oct;68(2):140–151.
  • Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7(11):1459–1470.
  • Zhanel GG, Cheung D, Adam H, et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs. 2016 Apr;76(5):567–588.
  • Demirci-Duarte S, Unalan-Altintop T, Gulay Z, et al. In vitro susceptibility of OXA-48, NDM, VIM and IMP enzyme- producing Klebsiella spp. and Escherichia coli to fosfomycin. J Infect Dev Ctries. 2020 Apr 30;14(4):394–397.
  • Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev. 2016;29(2):321–347.
  • Florent A, Chichmanian R-M, Cua E, et al. Adverse events associated with intravenous fosfomycin. Int J Antimicrob Agents. 2011;37(1):82–83.
  • Castón JJ, Cano A, Pérez-Camacho I, et al. Impact of ceftazidime/avibactam versus best available therapy on mortality from infections caused by carbapenemase-producing Enterobacterales (CAVICOR study). J Antimicrob Chemother. 2022;77(5):1452–1460.
  • Sousa A, Pérez-Rodríguez MT, Soto A, et al. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA-48 carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018 Nov 1;73(11):3170–3175.
  • Caston JJ, Lacort-Peralta I, Martin-Davila P, et al. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int J Infect Dis. 2017 Jun;59:118–123.
  • Both A, Büttner H, Huang J, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother. 2017 Sep 1;72(9):2483–2488.
  • Fröhlich C, Sørum V, Thomassen AM, et al. OXA-48-mediated ceftazidime-avibactam resistance is associated with evolutionary trade-offs. mSphere. 2019; 4(2). 10.1128/mSphere.00024-19
  • Crandon JL, Nicolau DP. Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-β-lactamase producers. Antimicrob Agents Chemother. 2013 Jul;57(7):3299–3306.
  • Marshall S, Hujer AM, Rojas LJ, et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4):4.
  • Avery LM, Nicolau DP. Assessing the in vitro activity of ceftazidime/avibactam and aztreonam among carbapenemase-producing Enterobacteriaceae: defining the zone of hope. Int J Antimicrob Agents. 2018 Nov;52(5):688–691.
  • Jayol A, Nordmann P, Poirel L, et al. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2018 Feb 1;73(2):542–544.
  • Pfizer. A study to determine the efficacy, safety and tolerability of aztreonam-avibactam (atm-avi) ± metronidazole (mtz) versus meropenem (mer) ± colistin (col) for the treatment of serious infections due to gram negative bacteria. Revisit. 2019 Accessed 27 09 2022; https://clinicaltrials.gov/ct2/show/NCT03329092
  • Pfizer. Efficacy, Safety, and Tolerability of ATM-AVI in the Treatment of Serious Infection Due to MBL-producing Gram-negative Bacteria Accessed 27 09 2022. https://clinicaltrials.gov/ct2/show/NCT03580044.
  • Sadek M, Juhas M, Poirel L, et al. genetic features leading to reduced susceptibility to aztreonam-avibactam among metallo-β-lactamase-producing Escherichia coli isolates. Antimicrob agents chemother. 2020;64(17):e01659-20.
  • Ma K, Feng Y, McNally A, et al. Struggle to survive: the choir of target alteration, hydrolyzing enzyme, and plasmid expression as a novel aztreonam-avibactam resistance mechanism. In: mSystems, Vol. 5. 2020 Nov 3;5(6):e00821-20.
  • Nordmann P, Yao Y, Falgenhauer L, et al. Recent Emergence of Aztreonam-Avibactam Resistance in NDM and OXA-48 Carbapenemase-Producing Escherichia coli in Germany. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0109021.
  • Sato T, Yamawaki K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clinl Infect Dis. 2019;69(7):S538–S543.
  • Jacobs MR, Abdelhamed AM, Good CE, et al. ARGONAUT-I: activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, against Gram-Negative Bacteria, Including Carbapenem-Resistant Nonfermenters and Enterobacteriaceae with Defined Extended-Spectrum β-Lactamases and Carbapenemases. Antimicrob Agents Chemother. 2019;63(1):1.
  • Food US, Administration D. FDA approves new antibacterial drug to treat complicated urinary tract infections as part of ongoing efforts to address antimicrobial resistance Accessed 27 09 2022. https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-complicated-urinary-tract-infections-part-ongoing-efforts.
  • Food and Drug Administration (FDA). FDA Briefing Document Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). Cefiderocol Injection. October. 2019;16 page 45 doi:https://www.fda.gov/media/131703/download Accessed 27 09 2022 .
  • Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 2021;3(3):92.
  • Timsit JF, Paul M, Shields RK, et al. Clin Infect Dis. In: Cefiderocol for the Treatment of Infections Due To Metallo-Beta-Lactamase-Producing Pathogens in the CREDIBLE-CR And APEKS-NP Phase 3 Randomized Studies. Feb, 2022. 11. DOI: 10.1093/cid/ciac078
  • Falcone M, Tiseo G, Leonildi A, et al. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2022 Mar;21(5):e0214221.
  • Wright H, Harris PNA, Chatfield MD, et al. Investigator-Driven Randomised Controlled Trial of Cefiderocol versus Standard Therapy for Healthcare-Associated and Hospital-Acquired Gram-negative Bloodstream Infection: study protocol (the GAME CHANGER trial): study protocol for an open-label, randomised controlled trial. Trials. 2021 Dec 7;22(1):889.
  • Lowman W, Schleicher G. Antimicrobial treatment and outcomes of critically ill patients with OXA-48 like carbapenemase-producing Enterobacteriaceae infections. Diagn Microbiol Infect Dis. 2015 Feb;81(2):138–140.
  • Madueño A, González-García J, Mdm AS, et al. Clinical features and outcomes of bacteraemia due to OXA-48-like carbapenemase-producing Klebsiella pneumoniae in a tertiary hospital. Enferm Infecc Microbiol Clin. 2018 Oct;36(8):498–501.
  • Ming DK, Otter JA, Ghani R, et al. Clinical risk stratification and antibiotic management of NDM and OXA-48 carbapenemase-producing Enterobacteriaceae bloodstream infections in the UK. J Hosp Infect. 2019 May;102(1):95–97.
  • Nabarro LEB, Shankar C, Pragasam AK, et al. Clinical and Bacterial Risk Factors for Mortality in Children With Carbapenem-resistant Enterobacteriaceae Bloodstream Infections in India. Pediatr Infect Dis J. 2017 Jun;36(6):e161–e166.
  • Alraddadi BM, Saeedi M, Qutub M, et al. Efficacy of ceftazidime-avibactam in the treatment of infections due to Carbapenem-resistant Enterobacteriaceae. BMC Infect Dis. 2019 Sep 4;19(1):772.
  • De la Calle C, Rodríguez O, Morata L, et al. Clinical characteristics and prognosis of infections caused by OXA-48 carbapenemase-producing Enterobacteriaceae in patients treated with ceftazidime-avibactam. Int J Antimicrob Agents. 2019 Apr;53(4):520–524.
  • Temkin E, Torre-Cisneros J, Beovic B, et al. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrobial Agents and Chemotherapy. 2017;61(2):e01964–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.