340
Views
1
CrossRef citations to date
0
Altmetric
Drug Profile

Omadacycline in treating community-based infections: a review and expert perspective

, &
Pages 255-265 | Received 13 Jul 2022, Accepted 25 Jan 2023, Published online: 06 Feb 2023

References

  • Kochanek KD, Murphy SL, Xu J, et al. Deaths: final data for 2014. Natl Vital Stat Rep. 2016;65(4):1–122.
  • Tong S, Amand C, Kieffer A, et al. Trends in healthcare utilization and costs associated with pneumonia in the United States during 2008–2014. BMC Health Serv Res. 2018 Sep 14;18(1):715. PMID: 30217156; PMCID: PMC6137867.
  • Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia an official clinical practice guideline of the American thoracic society and infectious diseases society of America. Am J Respir Crit Care Med. 2019;200:e45–67.
  • Brown KA, Khanafer N, Daneman N, et al. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother. 2013 May;57(5):2326–2332. Epub 2013 Mar 11. PMID: 23478961; PMCID: PMC3632900.
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar 19;66(7):e1–e48. PMID: 29462280; PMCID: PMC6018983.
  • Sakoulas G. Adverse effects of fluoroquinolones: where do we stand? N Engl J Med Journal Watch. 2019 Feb 13. https://www.jwatch.org/na48248/2019/02/13/adverse-effects-fluoroquinolones-where-do-we-stand.
  • Levaquin package insert, 2020 [cited 2022 Jul 5]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021721s020_020635s57_020634s52_lbl.pdf
  • Sakoulas G. Expert update on acute bacterial skin and skin structure infection treatment options in the community setting. J Fam Pract. 2022 Jan;71(Suppl1 Bacterial):S2–S8. PMID: 35413233.
  • Gatti M, Raschi E, De Ponti F. Serotonin syndrome by drug interactions with linezolid: clues from pharmacovigilance-pharmacokinetic/pharmacodynamic analysis. Eur J Clin Pharmacol. 2021 Feb;77(2):233–239. pub 2020 Sep 8. PMID: 32901348; PMCID: PMC7803711.
  • Brody DJ, Gu Q. Antidepressant use among adults: United States, 2015–2018. NCHS Data Brief No. 377, September 2020. https://www.cdc.gov/nchs/products/databriefs/db377.htm, accessed 3 July 2022.
  • World Health Organization. Antibacterial products in clinical development for priority pathogens. June 2022. https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens. cited July 1, 2022.
  • Honeyman L, Ismail M, Nelson ML, et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob Agents Chemother. 2015;59(11):7044–7053.
  • Bundrant L, Tzanis E, Garrity-Ryan L, et al. Safety and pharmacokinetics of the aminomethylcycline antibiotic omadacycline administered to healthy subjects in oral multiple-dose regimens. Antimicrob Agents Chemother. 2018;2(62):e01487–17.
  • Lakota EA, Van Wart SA, Trang M, et al. Population pharmacokinetic analyses for omadacycline using phase 1 and 3 data. Antimicrob Agents Chemother. 2020;7(64):e02263–19
  • Tzanis E, Manley A, Villano S, et al. Effect of food on the bioavailability of omadacycline in healthy participants. J Clin Pharmacol. 2017;57(3):321–327.
  • Leviton I, Omadacycline Oral AM. Dosing and pharmacokinetics in community‑acquired bacterial pneumonia and acute bacterial skin and skin structure infection. Clin Drug Investig. 2022;42:193–197.
  • Stets R, Popescu M, Gonong JR, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019;380(6):517–527.
  • Gill CM, Fratoni AJ, Shepard AK, et al. Omadacycline pharmacokinetics and soft-tissue penetration in diabetic patients with wound infections and healthy volunteers using in vivo microdialysis. J Antimicrob Chemother. 2022;77:1372–1378.
  • MacGowen A. Tigecycline pharmacokinetic/pharmacodynamics update. J Antimicrob Chemother. 2010;65(Suppl 1):i11–i16.
  • Rodvold KA, Pai MP. Pharmacokinetics and pharmacodynamics of oral and intravenous omadacycline. Clin Infect Dis. 2019;69(suppl 1):S16–22.
  • Noel AR, Attwood M, Bowker KE, et al. In vitro pharmacodynamics of omadacycline against Escherichia coli and Acinetobacter baumannii. J Antimicrob Chemother. 2021;76:667–670.
  • Karlowsky JA, Steenbergen J, Zhanel GG. Microbiology and preclinical review of omadacycline. Clin Infect Dis. 2019 Aug;69(Suppl 1):S6–S15.
  • Zhanel GG, Esquivel J, Zelenitsky S, et al. Omadacycline: a Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent. Drugs. 2020 Feb;80(3):285–313.
  • Bidell MR, Lodise TP. Use of oral tetracyclines in the treatment of adult outpatients with skin and skin structure infections: focus on doxycycline, minocycline, and omadacycline. Pharmacotherapy. 2021 Nov;41(11):915–931.
  • Bidell MR, Pai MAP, Lodise TP. Use of oral tetracyclines in the treatment of adult patients with community-acquired bacterial pneumonia: a literature review on the often-overlooked antibiotic class. Antibiotics (Basel). 2020 Dec 14;9(12):905.
  • Chopra T, Sandhu A, Theriault N, et al. Omadacycline: a therapeutic review of use in community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Future Microbiol. 2020 Sep;15:1319–1333. Epub 2020 Sep 22 doi: 10.2217/fmb-2020-0182
  • Burgos RM, Rodvold KA. Omadacycline: a novel aminomethylcycline. Infect Drug Resist. 2019 Jul;2(12):1895–1915.
  • Dougherty JA, Sucher AJ, Chahine EB, et al. Omadacycline: a New Tetracycline Antibiotic. Ann Pharmacother. 2019 May;53(5):486–500.
  • Pfaller MA, Huband MD, Shortridge D, et al. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: report from the SENTRY antimicrobial surveillance program, 2016 to 2018. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e02488–19.
  • Dubois J, Dubois M, Martel JF. In vitro and intracellular activities of omadacycline against Legionella pneumophila. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e01972–19.
  • Waites KB, Crabb DM, Liu Y, et al. In vitro activities of omadacycline (PTK 0796) and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother. 2016;60:7502–7504.
  • Kohlhoff S, Huerta NA, Hammerschlag MR In vitro activity of omadacycline against Chlamydia pneumoniae. Antimicrobial agents and chemotherapy 2018; AAC.01907–18.
  • Quade BR, Ramírez-Hernández A, Blanton LS. In vitro susceptibility of rickettsia species to eravacycline, omadacycline, and tigecycline. Antimicrob Agents Chemother. 2021 Jun 1;65(8):AAC0066521.
  • Stapert L, Wolfe C, Shinabarger D, et al. In vitro activity of omadacycline and comparators against anaerobic bacteria. Antimicrob Agents Chemother. 2018;62(4):e00047–00018.
  • Goldstein EJC, Citron DM, Tyrrell KL, et al. Comparative in vitro activity of omadacycline against dog and cat bite wound isolates. Antimicrob AgentsChemother. 2018;62(4):e02551–02517.
  • Kim O, Leahy RG, Traczewski M, et al. Activity and efficacy of omadacycline against Clostridium difficile. Poster P1325 Presented at the 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); April 9–12, 2016; Amsterdam, The Netherlands.
  • Camporeale A, Tellapragada C, Kornijenko J, et al. In vitro activity of omadacycline and five comparators against contemporary ribotypes of Clostridioides difficile in Stockholm, Sweden. Microbiol Spectr. 2021;9(2):e0144021.
  • Begum K, Bassères E, Miranda J, et al. In vitro activity of omadacycline, a new tetracycline analog, and comparators against Clostridioides difficile. Antimicrob Agents Chemother. 2020;64:e00522–20.
  • Kaushik A, Ammerman NC, Martins O, et al. In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of mycobacterium abscessus. Antimicrob Agents Chemother. 2019 May 24;63(6):e00470–19.
  • Shoen C, Benaroch D, Sklaney M, et al. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019 Apr 25;63(5):e02522–18.
  • Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of omadacycline against nontuberculous mycobacteria. Antimicrob Agents Chemother. 2021 Feb 17;65(3):e01947–20.
  • Steenbergen J, Tanaka SK, Miller LL, et al. In vitro and in vivo activity of omadacycline against two biothreat pathogens, Bacillus anthracis and Yersinia pestis. Antimicrob Agents Chemother. 2017;61(5):e02434–02416.
  • Draper MP, Miller L, Halasohoris S, et al. In vitro activity of omadacycline (OMC) against biothreat bacteria. Poster 253. ASM Biodefense. Washington DC: American Society for Microbiology; 2013.
  • Noel GJ, Draper MP, Hait H, et al. A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections. Antimicrob Agents Chemother. 2012 Nov;56(11):5650–5654. Epub 2012 Aug 20. PMID: 22908151; PMCID: PMC3486554
  • O’Riordan W, Green S, Overcash JS, et al. Omadacycline for Acute Bacterial Skin and Skin-Structure Infections. N Engl J Med. 2019 Feb 7;380(6):528–538.
  • O’Riordan W, Cardenas C, Shin E, et al. OASIS-2 Investigators. Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial. Lancet Infect Dis. 2019 Oct;19(10):1080–1090.
  • Abrahamian FM, Sakoulas G, Tzanis E, et al. Omadacycline for acute bacterial skin and skin structure infections. Clin Infect Dis. 2019 Aug 1;69(Suppl 1):S23–S32.
  • Cornely OA, File TM Jr, Garrity-Ryan L, et al. Safety and efficacy of omadacycline for treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections in patients with mild-to-moderate renal impairment. Int J Antimicrob Agents. 2021 Feb;57(2):106263.
  • Pai MP, Wilcox MH, Chitra S, et al. Safety and efficacy of omadacycline by BMI categories and diabetes history in two Phase III randomized studies of patients with acute bacterial skin and skin structure infections. J Antimicrob Chemother. 2021 Apr 13;76(5):1315–1322.
  • Sakoulas G. Linezolid versus omadacycline in diabetic soft tissue infections: a signal of different adjunctive immunological properties? J Antimicrob Chemother. 2022 May 29;77(6):1503–1505. PMID: 35141751.
  • Moran GJ, Chitra S, McGovern PC. Efficacy and safety of omadacycline versus linezolid in acute bacterial skin and skin structure infections in persons who inject drugs. Infect Dis Ther. 2022 Feb;11(1):517–531.
  • Sakoulas G, Eckburg PB, Amodio-Groton M, et al. Clinical efficacy of patients with secondary bacteremia treated with omadacycline: results from phase 3 acute bacterial skin and skin structure infections and community-acquired bacterial pneumonia studies. Open Forum Infect Dis. 2021 Jun 18;8(6):ofab136.
  • Torres A, Garrity-Ryan L, Kirsch C, et al. Omadacycline vs moxifloxacin in adults with community-acquired bacterial pneumonia. Int J Infect Dis. 2021;104:501–509.
  • Ramirez J, Deck DH, Eckburg PB, et al. Efficacy of omadacycline versus moxifloxacin in the treatment of community-acquired bacterial pneumonia by disease severity: results from the OPTIC study. Open Forum Infect Dis. 2021 Jun 18;8(6):ofab135.
  • Pai MP, Wilcox M, Chitra S, et al. Safety and efficacy of omadacycline by body mass index in patients with community-acquired bacterial pneumonia: subanalysis from a randomized controlled trial. Respir Med. 2021 Aug;184:106442.
  • File TM Jr, Low DE, Eckburg PB, et al. FOCUS 1: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011 Apr;66(Suppl 3):iii19–32.
  • Low DE, File TM Jr, Eckburg PB, et al. FOCUS 2: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011 Apr;66(Suppl 3):iii33–44.
  • Morrisette T, Alsaimy S, Philley JV, et al. Preliminary, real-world, multicenter experience with omadacycline for mycobacterium abscessus infections. Open Forum Infect Dis. 2021 Jan 7;8(2):ofab002. PMID: 33628856; PMCID: PMC7890947.
  • Bich Hanh BT, Quang NT, Park Y, et al. Omadacycline potentiates clarithromycin activity against mycobacterium abscessus. Front Pharmacol. 2021 Dec 8;12:790767. PMID: 34955859; PMCID: PMC8693020. DOI:10.3389/fphar.2021.790767
  • Chen J, Zhou H, Huang J, et al. Virulence alterations in Staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J Adv Res. 2021 Jan 23;31:165–175. PMID: 34194840; PMCID: PMC8240104. DOI:10.1016/j.jare.2021.01.008
  • Berti A, Rose W, Nizet V, et al. Antibiotics and Innate Immunity: a Cooperative Effort Toward the Successful Treatment of Infections. Open Forum Infect Dis. 2020 Jul 20;7(8):ofaa302. PMID: 32818143; PMCID: PMC7423293.
  • Lin L, Nonejuie P, Munguia J, et al. Azithromycin synergizes with cationic antimicrobial peptides to extert bactericidal and therapeutic activity against highly multi-drug resistant Gram-negative bacterial pathogens. EBioMed. 2015;2(7):690–698.
  • Dillon N, Holland M, Tsunemoto H, et al. Surprising synergy of dual translation inhibition vs Acinetobacter baumannii and other multidrug-resistant bacterial pathogens. EBioMedicine. 2019;46:193–201.
  • Uddin M, Mohammed T, Metersky M, et al. Effectiveness of beta-lactam plus doxycycline for patients hospitalized with community-acquired pneumonia. Clin Infect Dis. Nov 9 2021;ciab863. Epub ahead of print. PMID: 34751745 doi: 10.1093/cid/ciab863
  • Asadi L, Sligl WI, Eurich DT, et al. Macrolide-based regimens and mortality in hospitalized patients with community-acquired pneumonia: a systematic review and meta-analysis. Clin Infect Dis. 2012 Aug;55(3):371–380. Epub 2012 Apr 16. PMID: 22511553
  • Flanders SA, Dudas V, Kerr K, et al. Effectiveness of ceftriaxone plus doxycycline in the treatment of patients hospitalized with community-acquired pneumonia. J Hosp Med. 2006 Jan 1;1:7–12. PMID: 17219465. DOI:10.1002/jhm.8
  • Colaço HG, Barros A, Neves-Costa A, et al. Tetracycline antibiotics induce host-dependent disease tolerance to infection. Immunity. 2021 Jan 12;54(1):53–67.e7. Epub 2020 Oct 14. PMID: 33058782; PMCID: PMC7840524.
  • Peukert K, Fox M, Schulz S, et al. Inhibition of caspase-1 with tetracycline ameliorates acute lung injury. Am J Respir Crit Care Med. 2021 Jul 1;204(1):53–63. PMID: 33760701; PMCID: PMC8437127.
  • Nagler AR, Del Rosso J. The use of oral antibiotics in the management of rosacea. J Drugs Dermatol. 2019 Jun 1;18(6):506. PMID: 31251542.
  • Watts KM, Lahiri P, Arrazuria R, et al. Oxytetracycline reduces inflammation and treponeme burden whereas vitamin D3promotes β-defensin expression in bovine infectious digital dermatitis. Cell Tissue Res. 2020 Feb;379(2):337–348. Epub 2019 Aug 13. PMID: 31410630
  • Varpula T, Pettilä V, Rintala E, et al. Late steroid therapy in primary acute lung injury. Intensive Care Med. 2000 May;26(5):526–531. PMID: 10923725
  • Domon H, Maekawa T, Yonezawa D, et al. Mechanism of macrolide-induced inhibition of pneumolysin release involves impairment of autolysin release in macrolide-resistant streptococcus pneumoniae. Antimicrob Agents Chemother. 2018 Oct 24;62(11):e00161–18. PMID: 30181369; PMCID: PMC6201085.
  • Domon H, Isono T, Hiyoshi T, et al. Clarithromycin inhibits pneumolysin production via downregulation of ply gene transcription despite autolysis activation. Microbiol Spectr. 2021 Oct 31;9(2):e0031821. Epub 2021 Sep 1. PMID: 34468195; PMCID: PMC8557819.
  • Anderson R, Steel HC, Cockeran R, et al. Comparison of the effects of macrolides, amoxicillin, ceftriaxone, doxycycline, tobramycin and fluoroquinolones, on the production of pneumolysin by Streptococcus pneumoniae in vitro. J Antimicrob Chemother. 2007 Nov;60(5):1155–1158. Epub 2007 Sep 10. PMID: 17848373
  • Anderson R, Steel HC, Cockeran R, et al. Clarithromycin alone and in combination with ceftriaxone inhibits the production of pneumolysin by both macrolide-susceptible and macrolide-resistant strains of Streptococcus pneumoniae. J Antimicrob Chemother. 2007 Feb;59(2):224–229. Epub 2007 Jan 11. PMID: 17218449
  • Fukuda Y, Yanagihara K, Higashiyama Y, et al. Effects of macrolides on pneumolysin of macrolide-resistant Streptococcus pneumoniae. Eur Respir J. 2006 May;27(5):1020–1025. Epub 2006 Feb 2. PMID: 16455827
  • Walker SG, Carnu OI, Tüter G, et al. The immunoglobulin A1 proteinase from Streptococcus pneumoniae is inhibited by tetracycline compounds. FEMS Immunol Med Microbiol. 2006 Nov;48(2):218–222. Epub 2006 Sep 21. PMID: 16995879
  • Fernández-Hidalgo N, Almirante B, Gavaldà J, et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating enterococcus faecalis infective endocarditis. Clin Infect Dis. 2013;56:1261–1268.
  • Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and metaanalysis. Clin Infect Dis. 2018;66(4):514–522. PMID: 29401273.
  • Hodille E, Rose W, Diep BA, et al. The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin Microbiol Rev. 2017;30:887–917.
  • Laho D, Blumental S, Botteaux A, et al. Invasive group A streptococcal infections: benefit of clindamycin, intravenous immunoglobulins and secondary prophylaxis. Front Pediatr. 2021;9:697938.
  • Katahira EJ, Davidson SM, Stevens DL, et al. Subinhibitory concentrations of tedizolid potently inhibit extracellular toxin production by methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Med Microbiol. 2019;68:255–262.
  • Diep BA, Afasizheva A, Le HN, et al. Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis. 2013;208:75–82.
  • Stevens DL, Ma Y, Salmi DB, et al. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis. 2007;195:202–211.
  • Pichereau S, Pantrangi M, Couet W, et al. Simulated antibiotic exposures in an in vitro hollow-fiber infection model influence toxin gene expression and production in community-associated methicillin-resistant Staphylococcus aureus strain MW2. Antimicrob Agents Chemother. 2012;56:140–147.
  • Alba-Loureiro TC, Munhoz CD, Martins JO, et al. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res. 2007;40:1037–1044.
  • Tan JS, Anderson JL, Watanakunakorn C, et al. Neutrophil dysfunction in diabetes mellitus. J Lab Clin Med. 1975;85:26–33.
  • Rayfield EJ, Ault MJ, Keusch GT, et al. Infection and diabetes: the case for glucose control. Am J Med. 1982;72:439–450.
  • Tedizolid package insert. https://www.merck.com/product/usa/pi_circulars/s/sivextro/sivextro_pi.pdf.
  • Drusano GL, Liu W, Kulawy R, et al. Impact of granulocytes on the antimicrobial effect of tedizolid in a mouse thigh infection model. Antimicrob Agents Chemother. 2011;55:5300–5305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.