111
Views
0
CrossRef citations to date
0
Altmetric
Review

Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV

, , & ORCID Icon

References

  • Haeuser E, Serfes AL, Cork MA, et al. Mapping age-and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018. BMC Med. 2022;20(1):1–24.
  • UNAIDS. UNAIDS. 2022 [cited 2022 Nov 1]. Available from: https://www.unaids.org/en/resources/fact-sheet#:~:text=38.4%20million%20%5B33.9%20million%E2%80%9343.8,accessing%20antiretroviral%20therapy%20in%202021
  • Liu -C-C, Huo C-X, Zhai C. Synthesis and Immunological Evaluation of Pentamannose-Based HIV-1 Vaccine Candidates. Bioconjug Chem. 2022;33(5):807–820.
  • Engelman A, Cherepanov P. The structural biology of HIV-1: mechanistic and therapeutic insights. Nature rev Microbiol. 2012;10(4):279–290.
  • Ledesma JR, Ma J, Vongpradith A. Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: results from the Global Burden of Disease Study 2019. Lancet Infect Dis. 2022;22(2):222–241.
  • Sartorius B, VanderHeide JD, Yang M. Subnational mapping of HIV incidence and mortality among individuals aged 15–49 years in sub-Saharan Africa, 2000–18: a modelling study. lancet HIV. 2021;8(6):e363–e375.
  • Aleksandrova K, Reichmann R, Kaaks R. Mapping subnational HIV mortality in six Latin American countries with incomplete vital registration systems. BMC Med. 2021;19:1–25.
  • Frank TD, Carter A, Jahagirdar D. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. lancet HIV. 2019;6(12):e831–e859.
  • Rudometova NB, Shcherbakov DN, Rudometov AP. Model systems of human immunodef iciency virus (HIV-1) for in vitro eff icacy assessment of candidate vaccines and drugs against HIV-1. Vavilov J Genet Breed. 2022;26(2):214.
  • Jahagirdar D, Walters MK, Novotney A. Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Bn of Diseases Study 2019. lancet HIV. 2021;8(10):e633–e651.
  • Cohn LB, Chomont N, Deeks SG. The biology of the HIV-1 latent reservoir and implications for cure strategies. Cell Host Microbe. 2020;27(4):519–530.
  • Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892:173751).
  • Waheed Y, Malik S, Khan M. The World after Ebola: An Overview of Ebola Complications, Vaccine Development, Lessons Learned, Financial Losses, and Disease Preparedness. Crit Rev Eukaryot Gene Expr. 2019;29(1):77–84.
  • Ng’uni T, Chasara C, Ndhlovu ZM. Major scientific hurdles in HIV vaccine development: historical perspective and future directions. Front Immunol. 2020;11:590780.
  • Chhatbar C, Mishra R, Kumar A. HIV vaccine: hopes and hurdles. Drug Discov Today. 2011;16(21–22):948–956.
  • Shapiro SZ. Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019;37(26):3400–3408.
  • Haynes BF, Mascola JR. The quest for an antibody-based HIV vaccine. Immunol Rev. 2017;275(1):5.
  • Waheed Y, Sah R, Muhammad K. Recent Developments in Vaccines for Viral Diseases. Vaccines (Basel). 2023;11(2):198.
  • Fauci AS. An HIV vaccine: Mapping uncharted territory. Jama. 2016;316(2):143–144.
  • Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and glycan mimicry in HIV vaccine design. J Mol Biol. 2019;431(12):2223–2247.
  • Irvine DJ. Materializing the future of vaccines and immunotherapy. Nat Rev Mater. 2016;1(1):1–2.
  • Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res. 2019;17(2):75–84.
  • Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines. 2020;19(8):699–726.
  • Brian W. Bioinformatics and machine learning in prevention, detection and treatment of HIV/AIDS. [Doctoral dissertation], Brac University. 2021.
  • Sunita S, Sajid A, Singh Y. Computational tools for modern vaccine development. Hum Vaccin Immunother. 2020;16(3):723–735.
  • Malik S, Khalid S, Ali H. In-silico modeling and analysis of the therapeutic potential of miRNA-7 on EGFR associated signaling network involved in breast cancer. Gene Rep. 2020;21:100938.
  • Irani S, Bolhassani A, Sadat SM. Davoodi, S., Bolhassani, A., Sadat, S. M., & Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett. 2019;41(11):1283–1298.
  • Ipp H, Zemlin A. The paradox of the immune response in HIV infection: when inflammation becomes harmful. Clin Chim Acta. 2013;416:96–99.
  • McMichael AJ, Borrow P, Tomaras GD. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10(1):11–23.
  • Tohidi F, Sadat SM, Bolhassani A. Induction of a Robust Humoral Response using HIV-1 VLPMPER-V3 VLP MPER-V3 as a Novel Candidate Vaccine in BALB/c Mice. Curr HIV Res. 2019;17(1):33–41.
  • Soghoian DZ, Jessen H, Flanders M. HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci Transl Med. 2012;4(123):123ra25–123ra25.
  • Martin-Gayo E, Buzon MJ, Ouyang Z. Potent cell-intrinsic immune responses in dendritic cells facilitate HIV-1-specific T cell immunity in HIV-1 elite controllers. PLoS Pathog. 2015;11(6):e1004930.
  • Trovato M, D’Apice L, Prisco A. HIV vaccination: a roadmap among advancements and concerns. Int J Mol Sci. 2018;19(4):1241.
  • Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708–720.
  • Li JZ, Heisey A, Ahmed H. Relationship of HIV reservoir characteristics with immune status and viral rebound kinetics in an HIV therapeutic vaccine study. AIDS. 2014;28(18):2649.
  • Kawaguchi A, Nita M, Ishii T. Antiretroviral therapy adherence and its determinant factors among people living with HIV/AIDS: a case study in Iran. BMC Res Notes. 2019;12(1):1–5.
  • Pollard RB, Rockstroh JK, Pantaleo G. Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4×: a phase 2 randomised, double-blind, placebo-controlled trials. Lancet Infect Dis. 2014;14(4):291–300.
  • Mwimanzi P, Markle TJ, Martin E. Development of prophylactic vaccines against HIV-1. Retrovirology. 2013;10(1):1–16.
  • García F, León A, Gatell JM. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother. 2012;8(5):569–581.
  • Collaboration., HIV-Causal. When to initiate combined antiretroviral therapy to reduce mortality and AIDS-defining illness in HIV-infected persons in developed countries: an observational study. Ann Inter Med. 2011;154(8):509–515.
  • Larijani MS, Pouriayevali MH, Sadat SM. Production of recombinant HIV-1 p24-Nef protein in two forms as potential candidate vaccines in three vehicles. Curr Drug Deliv. 2020;17(5):387–395.
  • Weichseldorfer M, Reitz M, Latinovic OS. Past HIV-1 medications and the current status of combined antiretroviral therapy options for HIV-1 patients. Pharmaceutics. 2021;13(11):1798.
  • Pattnaik GP, Chakraborty H. Entry inhibitors: efficient means to block viral infection. J Membr Biol. 2020;253(5):425–444.
  • Beccari MV, Mogle BT, Sidman EF. Ibalizumab, a novel monoclonal antibody for the management of multidrug-resistant HIV-1 infection. Antimicrob Agents Chemother. 2019;63(6):e00110–19.
  • Lataillade M, Lalezari JP, Kozal M. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in heavily treatment-experienced individuals: week 96 results of the phase 3 BRIGHTE study. lancet HIV. 2020;7(11):e740–e751.
  • Schürmann D, Rudd DJ, Zhang S. Safety, pharmacokinetics, and antiretroviral activity of islatravir (ISL, MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor, following single-dose administration to treatment-naive adults infected with HIV-1: an open-label, phase. lancet HIV. 2020;7(3):e164–e172.
  • Wang Y, De Clercq E, Li G. Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin Drug Metab Toxicol. 2019;15(10):813–829.
  • Mbhele N, Chimukangara B, Gordon M. HIV-1 integrase strand transfer inhibitors: a review of current drugs, recent advances and drug resistance. Int J Antimicrob Agents. 2021;57(5):106343.
  • Dvory-Sobol H, Shaik N, Callebaut C. Lenacapavir: a first-in-class HIV-1 capsid inhibitor. Curr Opin HIV AIDS. 2022;17(1):15–21.
  • Sun L, Zhang X, Xu S. An insight on medicinal aspects of novel HIV-1 capsid protein inhibitors. Eur J Med Chem. 2021;217:113380.
  • Rodari A, Darcis G, Van Lint CM. The current status of latency reversing agents for HIV-1 remission. Annu Rev Virol. 2021;8(1):491–514.
  • Lopez Angel CJ, Tomaras GD. Bringing the path toward an HIV-1 vaccine into focus. PLoS Pathog. 2020;16(9):e1008663.
  • Wang Q, Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Front Med. 2020;14(1):30–42.
  • Su B, Dispinseri S, Iannone V, et al. Update on Fc-mediated antibody functions against HIV-1 beyond neutralization. Front Immunol. 2019;10:2968.
  • Om K, Paquin-Proulx D, Montero M, et al. Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLoS Pathog. 2020;16(9):e1008764.
  • Ruprecht RM, Marasini B, Thippeshappa R. Mucosal antibodies: defending epithelial barriers against HIV-1 invasion. Vaccines (Basel). 2019;7(4):194.
  • Excler J-L, Kim JH. Novel prime-boost vaccine strategies against HIV-1. Expert Rev Vaccines. 2019;18(8):765–779.
  • Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines against HIV-1. Retrovirology. 2013;10(1):72.
  • Pardi N, LaBranche CC, Ferrari G. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol Ther Nucleic Acids. 2019;15:36–47.
  • Moyo N, Vogel AB, Buus S. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Molecular Therapy-Methods Clin Devel. 2019;12:32–46.
  • Malik S, Sah R, Muhammad K. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts—A Comprehensive Review. Vaccines (Basel). 2023;11(1):102.
  • Sadat Larijani M, Sadat SM, Bolhassani A. A shot at dendritic cell-based vaccine strategy against HIV-1. J Med Microbiol Infect Dis. 2019;7(4):89–92.
  • Hargrave A, Mustafa AS, Hanif A. Current Status of HIV-1 Vaccines. Vaccines (Basel). 2021;9(9):1026.
  • Damm D, Rojas-Sánchez L, Theobald H. Calcium phosphate nanoparticle-based vaccines as a platform for improvement of HIV-1 Env antibody responses by intrastructural help. Nanomaterials. 2019;9(10):1389.
  • Chen C-W, Saubi N, Joseph-Munné J. Design concepts of virus-like particle-based HIV-1 vaccines. Front Immunol. 2020;11:573157.
  • Saunders KO, Pardi N, Parks R, et al. Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. npj Vaccines. 2021;6(1):1–14.
  • Martins C, Araújo F, Gomes MJ. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur J Pharm Biopharm. 2019;138:111–124.
  • Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med. 2012;63(1):95.
  • Gray GE, Laher F, Lazarus E. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol. 2016;17:104–109.
  • Robb ML, Rerks-Ngarm S, Nitayaphan S. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis. 2012;12(7):531–537.
  • Montefiori DC, Roederer M, Morris L. Neutralization tiers of HIV-1. Curr Opin HIV AIDS. 2018;13(2):128.
  • McCoy DE, Feo T, Harvey TA. Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat Commun. 2018;9(1):1–14.
  • Balfour L, Corace K, Tasca GA. Altruism motivates participation in a therapeutic HIV vaccine trial (CTN 173). AIDS care. 2010;22(11):1403–1409.
  • Pandey RK, Ojha R, Aathmanathan VS. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine. 2018;36(17):2262–2272.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013;8(3):360–376.
  • Leth S, Schleimann MH, Nissen SK. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. lancet HIV. 2016;3(10):e463–e472.
  • Jin H, Li D, Lin M-H. Tat-based therapies as an adjuvant for an HIV-1 functional cure. Viruses. 2020;12(4):415.
  • Larijani MS, Sadat SM, Bolhassani A. HIV-1 p24-nef DNA vaccine plus protein boost expands T-Cell responses in BALB/c. Curr Drug Deliv. 2021;18(7):1014–1021.
  • Khan KH. DNA vaccines: roles against diseases. Germs. 2013;3(1):26.
  • Rollier CS, Reyes-Sandoval A, Cottingham MG. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol. 2011;23(3):377–382.
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel). 2014;2(3):624–641.
  • E. Gomez C, L. Najera J, Krupa M. MVA and NYVAC as vaccines against emergent infectious diseases and cancer. Curr Gene Ther. 2011;11(3):189–217.
  • Pitisuttithum P, Rerks-Ngarm S, Bussaratid V. Safety and reactogenicity of canarypox ALVAC-HIV (vCP1521) and HIV-1 gp120 AIDSVAX B/E vaccination in an efficacy trial in Thailand. PloS one. 2011;6(12):e27837.
  • Iyer S, Amara R. DNA/MVA Vaccines for HIV/AIDS. Vaccines (Basel). 2014;2(1):160–178.
  • García F, Climent N, Assoumou L. A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis. 2011;203(4):473–474.
  • Larijani MS, Mashhadi Abolghasem Shirazi M, Ramezani A. Murine Dendritic Cells for Immunotherapy and Vaccine Development: Generation, Optimization and Transduction. Vaccine Res. 2020;7(2):22–27.
  • Larijani MS, Ramezani A, Shirazi MM, et al. Evaluation of transduced dendritic cells expressing HIV-1 p24-Nef antigens in HIV-specific cytotoxic T cells induction as a therapeutic candidate vaccine. Virus Res. 2021;298:198403.
  • García F, Routy J-P. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection: Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine. 2011;29(38):6454–6463.
  • Dear N, Esber A, Iroezindu M. Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Res Ther. 2022;19(1):1–15.
  • Gao Y, Wijewardhana C, Mann JFS. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front Immunol. 2018;9:345.
  • Rezaei T, Khalili S, Baradaran B. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release. 2019;316:116–137.
  • Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023;28(2):661.
  • Das Neves J, Amiji MM, Bahia MF. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4–5):458–477.
  • Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021; 11(3):748–787.
  • Ali H, Khan AM, Anwar Zaman MA, et al. MEDICINAL PLANTS AND VACCINATIONS USED AGAINST COVID-19: A COMPREHENSIVE REVIEW. Pak J Weed Sci Res. 2022;28(4):435–446.
  • Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Seminars in immunology. Academic Press, 2017. 34, 123–132.
  • Mohapatra S, Boyapalle S, Mohapatra S. Nanotechnology applications to HIV vaccines and microbicides. J Glob Infect Dis. 2012;4(1):62.
  • Mamo T, Moseman EA, Kolishetti N. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine. 2010;5(2):269–285.
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances.,”. Ther Adv Vaccines. 2014;2(6):159–182.
  • Evelyn Roopngam P. Liposome and polymer-based nanomaterials for vaccine applications.,”. Nanomed J. 2019;6(1):1–10.
  • Moon JJ, Suh H, Bershteyn A. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater. 2011;10(3):243–251.
  • Prabhakar C, Krishna KB. A review on polymeric nanoparticles. Res J Pharm Technol. 2011;4(4):496–498.
  • Wibowo D, Jorritsma SHT, Gonzaga ZJ. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials. 2021;268:120597.
  • Rostami H, Ebtekar M, Ardestani MS, Yazdi MH, Mahdavi M. Co-utilization of a TLR5 agonist and nano-formulation of HIV-1 vaccine candidate leads to increased vaccine immunogenicity and decreased immunogenic dose: A preliminary study. Immunol Lett. 2017;187:19–26.
  • Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–1107.
  • Alving CR, Matyas GR, Torres O. Adjuvants for vaccines to drugs of abuse and addiction.,”. Vaccine. 2014;32(42):5382–5389.
  • Malik S, Waheed Y. Tracking down the recent surge of polio virus in endemic and outbreak countries. J Med Virol. 2023;95(1):e28265.
  • Hansen B, Malyala P, Singh M. Effect of the strength of adsorption of HIV 1 SF162dV2gp140 to aluminum‐containing adjuvants on the immune response. J Pharm Sci. 2011;100(8):3245–3250.
  • Brito LA, Malyala P, O’Hagan DT. Vaccine adjuvant formulations: a pharmaceutical perspective. In Seminars in immunology. Academic Press, 2013. 25, 2, 130–145.
  • Geijtenbeek TBH, Gringhuis SI. C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol. 2016;16(7):433–448.
  • Vasou A, Sultanoglu N, Goodbourn S. Targeting pattern recognition receptors (PRR) for vaccine adjuvantation: from synthetic PRR agonists to the potential of defective interfering particles of viruses. Viruses. 2017;9(7):186.
  • Reed SG, Tomai M, Gale MJ. New horizons in adjuvants for vaccine development. Curr Opin Immunol. 2020;65:97–101.
  • Li M, Jiang Y, Gong T. Intranasal vaccination against HIV-1 with adenoviral vector-based nanocomplex using synthetic TLR-4 agonist peptide as adjuvant. Mol Pharm. 2016;13(3):885–894.
  • Shi S, Zhu H, Xia X. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–3178.
  • Gray GE, Bekker L-G, Laher F. Vaccine efficacy of ALVAC-HIV and bivalent subtype C gp120–MF59 in adults. N Engl J Med. 2021;384(12):1089–1100.
  • O’Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013;12(1):13–30.
  • Lövgren Bengtsson K, Morein B, Osterhaus AD. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines. 2011;10(4):401–403.
  • Baz Morelli A, Becher D, Koernig S, Silva A, Drane D, Maraskovsky E. ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol. 2012;61(7):935–943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.