720
Views
2
CrossRef citations to date
0
Altmetric
Review

Polymyxin combination therapy for multidrug-resistant, extensively-drug resistant, and difficult-to-treat drug-resistant gram-negative infections: is it superior to polymyxin monotherapy?

, &
Pages 387-429 | Received 24 Sep 2022, Accepted 21 Feb 2023, Published online: 08 Mar 2023

References

  • O’Neill J. Review on antimicrobial resistance. Tackling drugresistant infections globally: final report and recommendations. 2016. [cited 2019 Jan 10]. Available from: http://www.amrreview.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
  • Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281.
  • Kadri SS, Adjemian J, Lai YL, et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–1814.
  • Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655.
  • Lari AR, Ardebili A, Hashemi A. AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J Med Res. 2018;147(4):413.
  • Mehrad B, Clark NM, Zhanel GG, et al. Antimicrobial resistance in hospital-acquired Gram-negative bacterial infections. Chest. 2015;147(5):1413–1421.
  • Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010;362(19):1804–1813.
  • Roshani M, Goudarzi H, Hashemi A, et al. Detection of IS903, IS26 and ISEcp1 elements in CTX-M-Producing Klebsiella pneumoniae and Escherichia coli isolates from patients with leukemia in Iran. Jundishapur J Microbiol. 2018;11(12):1–8.
  • Pournajaf A, Razavi S, Irajian G, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226–236.
  • Nation RL, Li J, Cars O, et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis. 2015;15(2):225–234.
  • Bergen PJ, Landersdorfer CB, Lee HJ, et al. ‘Old’ antibiotics for emerging multidrug-resistant bacteria. Curr Opin Infect Dis. 2012;25(6):626.
  • Hernan RC, Karina B, Gabriela G, et al. Selection of colistin-resistant Acinetobacter baumannii isolates in postneurosurgical meningitis in an intensive care unit with high presence of heteroresistance to colistin. Diagn Microbiol Infect Dis. 2009;65(2):188–191.
  • Moosavian M, Shoja S, Nashibi R, et al. Post neurosurgical meningitis due to colistin heteroresistant Acinetobacter baumannii. Jundishapur J Microbiol. 2014;7(10):1–5.
  • Hartzell JD, Neff R, Ake J, et al. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin Infect Dis. 2009;48(12):1724–1728.
  • Dai C, Xiao X, Zhang Y, et al. Curcumin attenuates colistin-induced peripheral neurotoxicity in mice. ACS Infect Dis. 2020;6(4):715–724.
  • Talbot GH, Jezek A, Murray BE, et al. The infectious diseases society of America’s 10×’20 initiative (10 new systemic antibacterial agents US Food and Drug Administration approved by 2020): is 20×’20 a possibility? Clin Infect Dis. 2019;69(1):1–11.
  • Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000;406(6797):775–781.
  • Lane D. Designer combination therapy for cancer. Nat Biotechnol. 2006;24(2):163–164.
  • Richman DD. HIV chemotherapy. Nature. 2001;410(6831):995–1001.
  • Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Defining and defeating the intolerable burden of malaria. Am J Trop Med Hyg. 2007;77(6 Suppl):181–192.
  • Mitchison D, Davies G. The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis. 2012;16:724–732.
  • Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450–470.
  • Tumbarello M, Trecarichi EM, De Rosa FG, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicro Chemother. 2015;70(7):2133–2143.
  • Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017;17(7):726–734.
  • Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. 2018;18(4):391–400.
  • Lenhard JR, Nation RL, Tsuji BT. Synergistic combinations of polymyxins. Int J Antimicrob Agents. 2016;48(6):607–613.
  • Bergen PJ, Bulman ZP, Landersdorfer CB, et al. Optimizing polymyxin combinations against resistant Gram-negative bacteria. Infect Dis Ther. 2015;4(4):391–415.
  • Petrosillo N, Ioannidou E, Falagas M. Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect. 2008;14(9):816–827.
  • Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clini Microbiol. 2019;57(4):e01390–18.
  • Gordon NC, Png K, Wareham DW. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(12):5316–5322.
  • Mazutti K, Costa LB, Nascimento LV, et al. Effect of colistin and tylosin used as feed additives on the performance, diarrhea incidence, and immune response of nursery pigs. Semina: Ciências Agrárias. 2016;37(4):1947–1962.
  • Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–535.
  • European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA (ESAC-Net)-annual epidemiological report 2021. Stockholm: ECDC; 2022. [cited 2022 Nov 20]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/ESAC-Net_AER_2021_final-rev.pdf
  • Sun S, Negrea A, Rhen M, et al. Genetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 2009;53(6):2298–2305.
  • Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol. 2019;17(7):403–416.
  • Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5150–5154.
  • Jayol A, Poirel L, Brink A, et al. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother. 2014;58(8):4762–4766.
  • Kim S-H, Jia W, Parreira VR, et al. Phosphoethanolamine substitution in the lipid A of Escherichia coli O157: H7 and its association with PmrC. Microbiology. 2006;152(3):657–666.
  • Adams MD, Nickel GC, Bajaksouzian S, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009;53(9):3628–3634.
  • Pelletier MR, Casella LG, Jones JW, et al. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(10):4831–4840.
  • Moffatt JH, Harper M, Adler B, et al. Insertion sequence IS Aba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(6):3022–3024.
  • Moffatt JH, Harper M, Harrison P, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–4977.
  • Liu -Y-Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168.
  • Poirel L, Kieffer N, Nordmann P. In vitro study of IS Apl1-mediated mobilization of the colistin resistance gene mcr-1. Antimicrob Agents Chemother. 2017;61(7):e00127–17.
  • Carroll LM, Gaballa A, Guldimann C, et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio. 2019;10(3):e00853–19.
  • Wang Y, Xu C, Zhang R, et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis. 2020;20(10):1161–1171.
  • Al-Tawfiq JA, Laxminarayan R, Mendelson M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis. 2017;54:77–84.
  • Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015;31(4):707–721.
  • Moawad AA, Hotzel H, Neubauer H, et al. Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum β-lactamase-producing Escherichia coli. Gut Pathog. 2018;10(1):1–12.
  • Diekema DJ, Hsueh P-R, Mendes RE, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019;63(7):e00355–19.
  • Turnidge JD, Bell JM, Jones RN. Emergence of colistin-resistant Klebsiella spp. and Enterobacter spp. in the Asia-Pacific (APAC) region: a SENTRY antimicrobial surveillance program report (2006), abstr C2-2054. Abstr. 47th Intersci. Conf Antimicrob Agents Chemother. American Society for Microbiology, Washington, DC, 2007.
  • Yan W, Zhang Q, Zhu Y, et al. Molecular mechanism of polymyxin resistance in multidrug-resistant Klebsiella pneumoniae and Escherichia coli isolates from Henan province, China: a multicenter study. Infect Drug Resist. 2021;14:2657.
  • Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An update of mobile colistin resistance in non-fermentative Gram-negative bacilli. Front Cell Infect. 2022;12(882236):1–15.
  • Narimisa N, Goodarzi F, Bavari S. Prevalence of colistin resistance of Klebsiella pneumoniae isolates in Iran: a systematic review and meta-analysis. Ann Clin Microbiol. 2022;21(1):1–9.
  • Williams PC, Isaacs D, Berkley JA. Antimicrobial resistance among children in sub-Saharan Africa. Lancet Infect Dis. 2018;18(2):e33–e44.
  • Maalej SM, Meziou MR, Mahjoubi F, et al. Epidemiological study of Enterobacteriaceae resistance to colistin in Sfax (Tunisia). Med Mal Infect. 2012;42(6):256–263.
  • Dziri O, Dziri R, El Salabi AA, et al. Polymyxin E–resistant Gram-negative bacteria in Tunisia and neighboring countries: are there commonalities? Infect Drug Resist. 2021;14:4821.
  • Li Z, Cao Y, Yi L, et al. Emergent polymyxin resistance: end of an era? Open Forum Infect Dis. 2019;6(10):ofz368.
  • Buess S, Nüesch-Inderbinen M, Stephan R, et al. Assessment of animals as a reservoir for colistin resistance: no MCR-1/MCR-2-producing Enterobacteriaceae detected in Swiss livestock. J Glob Antimicrob Resist. 2017;8:33–34.
  • Li B, Ke B, Zhao X, et al. Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China from 2013 to 2016. Front Microbiol. 2018;9:2514.
  • Wang Y, Zhang R, Li J, et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol. 2017;2(4):1–7.
  • Hejnar P, Kolář M, Hájek V. Characteristics of Acinetobacter strains (phenotype classification, antibiotic susceptibility and production of beta-lactamases) isolated from haemocultures from patients at the teaching hospital in Olomouc. Acta Univ Palacki Olomuc Fac Med. 1999;142:73–77.
  • Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother. 2011;66(9):2070–2074.
  • Ko KS, Suh JY, Kwon KT, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J J Antimicrob Chemother. 2007;60(5):1163–1167.
  • Giamarellou H. Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents. 2016;48(6):614–621.
  • Sheck EA, Edelstein MV, Sukhorukova MV, et al. Epidemiology and genetic diversity of colistin nonsusceptible nosocomial Acinetobacter baumannii strains from Russia for 2013-2014. Can J Infect Dis Med Microbiol. 2017;1839190:1–5.
  • Carrasco L, Dabul ANG, Boralli C, et al. Polymyxin resistance among XDR ST1 carbapenem-resistant Acinetobacter baumannii clone expanding in a teaching hospital. Front Microbiol. 2021;12:622704.
  • Sherry N, Howden B. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam–epidemiology, laboratory detection and treatment implications. Expert Rev Anti Infect Ther. 2018;16(4):289–306.
  • European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe–annual report of the European antimicrobial resistance surveillance network (EARS-Net) 2017. Stockholm: ECDC; 2018. [cited 2020 Sep 20]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/AMR%202017_Cover%2BInner-web_v3.pdf
  • Acar A, Karaahmetoğlu G, Akalın H, et al. Pooled prevalence and trends of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates over the past 10 years in Turkey: a meta-analysis. J Glob Antimicrob Resist. 2019;18:64–70.
  • Apisarnthanarak A, Hsu LY, Khawcharoenporn T, et al. Carbapenem-resistant Gram-negative bacteria: how to prioritize infection prevention and control interventions in resource-limited settings? Expert Rev Anti Infect Ther. 2013;11(2):147–157.
  • Goli HR, Nahaei MR, Rezaee MA, et al. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol. 2016;8(1):62.
  • Dogonchi AA, Ghaemi EA, Ardebili A, et al. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: a potential threat to clinical therapeutics. Tzu Chi Med J. 2018;30(2):90.
  • Shahri FN, Izanloo A, Sheikh Beig Goharrizi MA, et al. Antimicrobial resistance, virulence factors, and genotypes of Pseudomonas aeruginosa clinical isolates from Gorgan, northern Iran. Int Microbiol. 2022;25(4):709–721.
  • Bakht M, Alizadeh SA, Rahimi S, et al. Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran. BMC Microbiol. 2022;22(1):1–16.
  • Rad ZR, Rad ZR, Goudarzi H, et al. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and pediatric patients in Iranian hospitals. Gene Rep. 2021;23:101152.
  • Humphries RM. Susceptibility testing of the polymyxins: where are we now? Pharmacotherapy. 2015;35(1):22–27.
  • European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. Växjö: EUCAST; 2016. [cited 2018 Aug 12]. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf
  • Dafopoulou K, Zarkotou O, Dimitroulia E, et al. Comparative evaluation of colistin susceptibility testing methods among carbapenem-nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2015;59(8):4625–4630.
  • Matuschek E, Åhman J, Webster C, et al. Antimicrobial susceptibility testing of colistin–evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24(8):865–870.
  • Tan T, Ng S. Comparison of Etest, Vitek and agar dilution for susceptibility testing of colistin. Clin Microbiol Infect. 2007;13(5):541–544.
  • Vourli S, Dafopoulou K, Vrioni G, et al. Evaluation of two automated systems for colistin susceptibility testing of carbapenem-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother. 2017;72(9):2528–2530.
  • Albur M, Noel A, Bowker K, et al. Colistin susceptibility testing: time for a review. J Antimicrob Chemother. 2014;69(5):1432–1434.
  • Karvanen MC, Mohamad A, Lagerback P. Colistin is extensively lost during normal experimental conditions. Abstr D-690, p 160. Abstr 51st Intersci Conf Antimicrob Agents Chemother. 2011. American Society for Microbiology, Washington, DC.
  • Hawley JS, Murray CK, Griffith ME, et al. Susceptibility of Acinetobacter strains isolated from deployed US military personnel. Antimicrob Agents Chemother. 2007;51(1):376–378.
  • Schurek KN, Sampaio JL, Kiffer CR, et al. Involvement of pmrAB and phoPQ in polymyxin B adaptation and inducible resistance in non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(10):4345–4351.
  • Li J, Nation RL, Turnidge JD, et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis. 2006;6(9):589–601.
  • Landman D, Georgescu C, Martin DA, et al. Polymyxins revisited. Clin Microbiol Rev. 2008;21(3):449–465.
  • Li J, Milne RW, Nation RL, et al. Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrob Agents Chemother. 2003;47(4):1364–1370.
  • Gupta S, Govil D, Kakar PN, et al. Colistin and polymyxin B: a re-emergence. Indian J Crit Care Med. 2009;13(2):49.
  • Chen LF, Kaye D. Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Infect Dis Clin North Am. 2009;23(4):1053–1075.
  • Barnett M, Bushby SM, Wilkinson S. Sodium sulphomethyl derivatives of polymyxins. Br J Pharmacol. 1964;23(3):552–574.
  • Bergen PJ, Li J, Rayner CR, et al. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):1953–1958.
  • Cheah S-E, Wang J, Nguyen VTT, et al. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70(12):3291–3297.
  • Sorlí L, Luque S, Grau S, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis. 2013;13(1):1–9.
  • Forrest A, Silveira F, Thamlikitkul V, et al. Toxicodynamics for colistin-associated changes in creatinine clearance. Abstr A-038a. Abstr 54th Intersci Conf Antimicrob Agents Chemother. 2014. American Society for Microbiology, Washington, DC.
  • Rattanaumpawan P, Ungprasert P, Thamlikitkul V. Risk factors for colistin-associated nephrotoxicity. J Infect. 2011;62(2):187–190.
  • Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin Infect Dis. 2014;59(1):88–94.
  • Nation RL, Li J. Optimizing use of colistin and polymyxin B in the critically ill. Semin Respir Crit Care Med. 2007;28:604–614.
  • Landersdorfer CB, Nation RL. Colistin: how should it be dosed for the critically ill? Semin Respir Crit Care Med. 2015;36(1):126–135.
  • Ma Z, Wang J, Nation RL, et al. Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother. 2009;53(7):2857–2864.
  • Couet W, Gregoire N, Marchand S, et al. Colistin pharmacokinetics: the fog is lifting. Clin Microbiol Infect. 2012;18(1):30–39.
  • Imberti R, Cusato M, Villani P, et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest. 2010;138(6):1333–1339.
  • Plachouras D, Karvanen M, Friberg L, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2009;53(8):3430–3436.
  • Mohamed AF, Karaiskos I, Plachouras D, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Clin Microbiol Infect. 2012;56(8):4241–4249.
  • Karaiskos I, Friberg LE, Pontikis K, et al. Colistin population pharmacokinetics after application of a loading dose of 9 MU colistin methanesulfonate in critically ill patients. Clin Microbiol Infect. 2015;59(12):7240–7248.
  • Dalfino L, Puntillo F, Mosca A, et al. High-dose, extended-interval colistin administration in critically ill patients: is this the right dosing strategy? A preliminary study. Clin Infect Dis. 2012;54(12):1720–1726.
  • Markou N, Markantonis SL, Dimitrakis E, et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, Gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clin Ther. 2008;30(1):143–151.
  • Garonzik S, Li J, Thamlikitkul V, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55(7):3284–3294.
  • Reed MD, Stern RC, O’Riordan MA, et al. The pharmacokinetics of colistin in patients with cystic fibrosis. J Clin Pharmacol. 2001;41(6):645–654.
  • Li J, Coulthard K, Milne R, et al. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother. 2003;52(6):987–992.
  • Littlewood JM, Koch C, Lambert PA, et al. A ten year review of colomycin. Respir Med. 2000;94(7):632–640.
  • Jensen T, Pedersen SS, Garne S, et al. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother. 1987;19(6):831–838.
  • Yapa SWS, Li J, Patel K, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58(5):2570–2579.
  • Kaplan S, Lee A, Caine N, et al. Long-term safety study of colistimethate sodium (Colobreathe®): findings from the UK Cystic Fibrosis Registry. J Cyst Fibros. 2021;20(2):324–329.
  • Markantonis S, Markou N, Fousteri M, et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother. 2009;53(11):4907–4910.
  • Imberti R, Cusato M, Accetta G, et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother. 2012;56(8):4416–4421.
  • Phe K, Lee Y, McDaneld PM, et al. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob Agents Chemother. 2014;58(5):2740–2746.
  • Zavascki AP, Nation RL. Nephrotoxicity of Polymyxins: is There Any Difference between Colistimethate and Polymyxin B? Antimicrob Agents Chemother. 2017;61(3):1–10.
  • Rigatto MH, Oliveira MS, Perdigão-Neto LV, et al. Multicenter prospective cohort study of renal failure in patients treated with colistin versus polymyxin B. Antimicrob Agents Chemother. 2016;60(4):2443–2449.
  • Tsuji BT, Pogue JM, Zavascki AP, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti‐infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39.
  • Bian X, Liu X, Hu F, et al. Pharmacokinetic/pharmacodynamic based breakpoints of polymyxin B for bloodstream infections caused by multidrug-resistant Gram-negative pathogens. Front Pharmacol. 2021;12:1–8.
  • Zavascki AP, Goldani LZ, Cao G, et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis. 2008;47(10):1298–1304.
  • Sandri AM, Landersdorfer CB, Jacob J, et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis. 2013;57(4):524–531.
  • Li Y, Deng Y, Zhu Z-Y, et al. Population pharmacokinetics of polymyxin B and dosage optimization in renal transplant patients. Front Pharmacol. 2021;12:1–9.
  • Manchandani P, Thamlikitkul V, Dubrovskaya Y, et al. Population pharmacokinetics of polymyxin B. Clin Pharmacol Ther. 2018;104(3):534–538.
  • Kubin CJ, Nelson BC, Miglis C, et al. Population pharmacokinetics of intravenous polymyxin B from clinical samples. Antimicrob Agents Chemother. 2018;62(3):e01493–17.
  • Lakota EA, Landersdorfer CB, Nation RL, et al. Personalizing polymyxin B dosing using an adaptive feedback control algorithm. Antimicrob Agents Chemother. 2018;62(7):1–9.
  • Miglis C, Rhodes NJ, Avedissian SN, et al. Population Pharmacokinetics of Polymyxin B in Acutely Ill Adult Patients. Antimicrob Agents Chemother. 2018;62(3):1–12.
  • Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis. 2000;31(Supplement_4):S131–S8.
  • Bhat S, Fujitani S, Potoski BA, et al. Pseudomonas aeruginosa infections in the intensive care unit: can the adequacy of empirical β-lactam antibiotic therapy be improved? Int J Antimicrob Agents. 2007;30(5):458–462.
  • Geerdes HF, Ziegler D, Lode H, et al. Septicemia in 980 patients at a university hospital in Berlin: prospective studies during 4 selected years between 1979 and 1989. Clin Infect Dis. 1992;15(6):991–1002.
  • Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–2328.
  • Falagas ME, Kasiakou SK, Saravolatz LD. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–1341.
  • Landersdorfer CB, Ly NS, Xu H. Quantifying subpopulation synergy for antibiotic combinations via mechanism-based modeling and a sequential dosing design. Antimicrob Agents Chemother. 2013;57(5):2343–2351.
  • Sharma R, Patel S, Abboud C, et al. Polymyxin B in combination with meropenem against carbapenemase-producing Klebsiella pneumoniae: pharmacodynamics and morphological changes. Int J Antimicrob Agents. 2017;49(2):224–232.
  • Ferrer-Espada R, Shahrour H, Pitts B, et al. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep. 2019;9(1):1–12.
  • Bolla J-M, Alibert-Franco S, Handzlik J, et al. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 2011;585(11):1682–1690.
  • Zampieri M, Zimmermann M, Claassen M, et al. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 2017;19(6):1214–1228.
  • Vincent IM, Ehmann DE, Mills SD, et al. Untargeted metabolomics to ascertain antibiotic modes of action. Antimicrob Agents Chemother. 2016;60(4):2281–2291.
  • Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–128.
  • Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39(2–3):581–597.
  • Han M-L, Liu X, Velkov T, et al. Metabolic analyses revealed time-dependent synergistic killing by colistin and aztreonam combination against multidrug-resistant Acinetobacter baumannii. Front Microbiol. 2018;9:2776.
  • Maifiah MHM, Creek DJ, Nation RL, et al. Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Sci Rep. 2017;7:45527.
  • Hussein M, Han M-L, Zhu Y, et al. Metabolomics study of the synergistic killing of polymyxin B in combination with amikacin against polymyxin-susceptible and-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64(1):1–16.
  • Han M-L, Liu X, Velkov T, et al. Comparative metabolomics reveals key pathways associated with the synergistic killing of colistin and sulbactam combination against multidrug-resistant Acinetobacter baumannii. Front Pharmacol. 2019;10:754.
  • Bian X, Liu X, Chen Y, et al. Dose optimization of colistin combinations against carbapenem-resistant Acinetobacter baumannii from patients with hospital-acquired pneumonia in China by using an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2019;63(4):1–12.
  • Cai B, Cai Y, Liew YX, et al. Clinical efficacy of polymyxin monotherapy versus nonvalidated polymyxin combination therapy versus validated polymyxin combination therapy in extensively drug-resistant Gram-negative Bacillus infections. Antimicrob Agents Chemother. 2016;60(7):4013–4022.
  • Zusman O, Avni T, Leibovici L, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother. 2013;57(10):5104–5111.
  • Bergen PJ, Bulman ZP, Saju S, et al. Polymyxin combinations: pharmacokinetics and pharmacodynamics for rationale use. Pharmacotherapy. 2015;35(1):34–42.
  • Manian FA, Meyer L, Jenne J, et al. Loss of antimicrobial susceptibility in aerobic Gram-negative bacilli repeatedly isolated from patients in intensive-care units. Infect Control Hosp Epidemiol. 1996;17(4):222–226.
  • Ni W, Cai X, Wei C, et al. Efficacy of polymyxins in the treatment of carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Braz J Infect Dis. 2015;19:170–180.
  • Durante-Mangoni E, Signoriello G, Andini R, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis. 2013;57(3):349–358.
  • Tängdén T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci. 2014;119(2):149–153.
  • Hariton E, Locascio JJ. Randomised controlled trials—The gold standard for effectiveness research. Int J Obstet Gynaecol. 2018;125(13):1716.
  • Paul M, Carmeli Y, Durante-Mangoni E, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69(9):2305–2309.
  • Zusman O, Altunin S, Koppel F, et al. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother. 2016;72(1):29–39.
  • Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–950.
  • Paul M, Kariv G, Goldberg E, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010;65(12):2658–2665.
  • Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2014;58(9):5598–5601.
  • Aydemir H, Akduman D, Piskin N, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect. 2013;141(6):1214–1222.
  • Qureshi ZA, Paterson DL, Potoski BA, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56(4):2108–2113.
  • Li J, Nation RL, Owen RJ, et al. Antibiograms of multidrug-resistant clinical Acinetobacter baumannii: promising therapeutic options for treatment of infection with colistin-resistant strains. Clin Infect Dis. 2007;45(5):594–598.
  • Tripodi M-F, Durante-Mangoni E, Fortunato R, et al. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int J Antimicrob Agents. 2007;30(6):537–540.
  • Lee HJ, Bergen PJ, Bulitta JB, et al. Synergistic activity of colistin and rifampin combination against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57(8):3738–3745.
  • Pantopoulou A, Giamarellos-Bourboulis EJ, Raftogannis M, et al. Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. Int J Antimicrob Agents. 2007;29(1):51–55.
  • Pachón-Ibáñez ME, Labrador-Herrera G, Cebrero-Cangueiro T, et al. Efficacy of colistin and its combination with rifampin in vitro and in experimental models of infection caused by carbapenemase-producing clinical isolates of Klebsiella pneumoniae. Front Microbiol. 2018;9:912.
  • Batirel A, Balkan I, Karabay O, et al. Comparison of colistin–carbapenem, colistin–sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis. 2014;33(8):1311–1322.
  • Simsek F, Gedik H, Yildirmak M, et al. Colistin against colistin-only-susceptible Acinetobacter baumannii-related infections: monotherapy or combination therapy? Indian J Med Microbiol. 2012;30(4):448.
  • Pournaras S, Vrioni G, Neou E, et al. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. Int J Antimicrob Agents. 2011;37(3):244–247.
  • Clancy CJ, Chen L, Hong JH, et al. Mutations of the ompK36 porin gene and promoter impact responses of sequence type 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob Agents Chemother. 2013;57(11):5258–5265.
  • Fadare FT, Elsheikh EAE, Okoh AI. In vitro assessment of the combination of antibiotics against some integron-harbouring Enterobacteriaceae from environmental sources. Antibiotics (Basel). 2022;11(8):1–13.
  • Deris ZZ, Yu HH, Davis K, et al. The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2012;56(10):5103–5112.
  • Teo JQ, Fauzi N, Ho JJ, et al. In vitro bactericidal activities of combination antibiotic therapies against carbapenem-resistant Klebsiella pneumoniae with different carbapenemases and sequence types. Front Microbiol. 2021;12:779988.
  • Lim TP, Cai Y, Hong Y, et al. In vitro pharmacodynamics of various antibiotics in combination against extensively drug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 2015;59(5):2515–2524.
  • Jernigan MG, Press EG, Nguyen MH. The combination of doripenem and colistin is bactericidal and synergistic against colistin-resistant, carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56(6):3395–3398.
  • Demiraslan H, Dinc G, Ahmed SS, et al. Carbapenem-resistant Klebsiella pneumoniae sepsis in corticosteroid receipt mice: tigecycline or colistin monotherapy versus tigecycline/colistin combination. J Chemother. 2014;26(5):276–281.
  • Michail G, Labrou M, Pitiriga V, et al. Activity of tigecycline in combination with colistin, meropenem, rifampin, or gentamicin against KPC-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2013;57(12):6028–6033.
  • Gaibani P, Lombardo D, Lewis RE, et al. In vitro activity and post-antibiotic effects of colistin in combination with other antimicrobials against colistin-resistant KPC-producing Klebsiella pneumoniae bloodstream isolates. J Antimicrob Chemother. 2014;69(7):1856–1865.
  • Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.
  • Wong D, Van Duin D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs. 2017;77(6):615–628.
  • van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infec Dis. 2016;63(2):234–241.
  • de Jonge BL, Karlowsky JA, Kazmierczak KM, et al. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM global surveillance study (2012 to 2014). Antimicrob Agents Chemother. 2016;60(5):3163–3169.
  • Spiliopoulou I, Kazmierczak K, Stone GG. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015–17). J Antimicrob Chemother. 2019;75(2):384–931.
  • Karlowsky JA, Kazmierczak KM, Bouchillon SK. In vitro activity of ceftazidime-avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Asia-Pacific countries: results from the INFORM global surveillance program, 2012 to 2015. Antimicrob Agents Chemother. 2018;62(7):e02569–17.
  • Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2017;61(8):e00883–17.
  • Van Duin D, Lok JJ, Earley M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(2):163–171.
  • Lee Y, Kim J, Trinh S. Meropenem–vaborbactam (Vabomere™): another option for carbapenem-resistant Enterobacteriaceae. Pharmacol Ther. 2019;44(3):110.
  • Hecker SJ, Reddy KR, Totrov M, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015 14;58(9):3682–3692.
  • Castanheira M, Huband MD, Mendes RE, et al. Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61(9):e00567–17.
  • Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem–vaborbactam versus best-available therapy in patients with carbapenem-resistant enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–355.
  • Smith JR, Rybak JM, Claeys KC. Imipenem‐cilastatin‐relebactam: a novel β‐lactam–β‐lactamase Inhibitor combination for the treatment of multidrug‐resistant Gram‐negative infections. Pharmacotherapy. 2020;40(4):343–356.
  • Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–2290.
  • Karaiskos I, Galani I, Papoutsaki V, et al. Carbapenemase producing Klebsiella pneumoniae: implication on future therapeutic strategies. Expert Rev Anti Infect Ther. 2022;20(1):53–69.
  • Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020;70(9):1799–1808.
  • Wright H, Bonomo RA, Paterson DL, et al. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false Dawn? Clin Microbiol Infect. 2017;23(10):704–712.
  • Shields RK, Potoski BA, Haidar G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63(12):1615–1618.
  • Barnes MD, Winkler ML, Taracila MA, et al. Klebsiella pneumoniae carbapenemase-2 (KPC-2), substitutions at Ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. mBio. 2017;8(5):e00528–17.
  • Crusio R, Rao S, Changawala N, et al. Epidemiology and outcome of infections with carbapenem-resistant Gram-negative bacteria treated with polymyxin B-based combination therapy. Scand J Infect Dis. 2014;46(1):1–8.
  • Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect. 2010;16(2):184–186.
  • Zarkotou O, Pournaras S, Tselioti P, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17(12):1798–1803.
  • Bergamasco M, Barroso Barbosa M, de Oliveira Garcia D, et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)‐producing K. pneumoniae in solid organ transplantation Transpl Infect Dis. 2012;14(2):198–205.
  • Abdelsalam MFA, Abdalla MS, El-Abhar HSE-D. Prospective, comparative clinical study between high-dose colistin monotherapy and colistin–meropenem combination therapy for treatment of hospital-acquired pneumonia and ventilator-associated pneumonia caused by multidrug-resistant Klebsiella pneumoniae. J of Global Antimicrobial Resistance. 2018;15:127–135.
  • Oliva A, Scorzolini L, Castaldi D, et al. Double-carbapenem regimen, alone or in combination with colistin, in the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp). J Infect. 2017;74(1):103–106.
  • Balkan II, Aygün G, Aydın S, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis. 2014;26:51–56.
  • Tascini C, Gemignani G, Palumbo F, et al. Clinical and microbiological efficacy of colistin therapy alone or in combination as treatment for multidrug resistant Pseudomonas aeruginosa diabetic foot infections with or without osteomyelitis. J Chemother. 2006;18(6):648–651.
  • Falagas M, Rafailidis P, Kasiakou S, et al. Effectiveness and nephrotoxicity of colistin monotherapy vs. colistin–meropenem combination therapy for multidrug-resistant Gram-negative bacterial infections. Clin Microbiol Infect. 2006;12(12):1227–1230.
  • Pintado V, San Miguel LG, Grill F, et al. Intravenous colistin sulphomethate sodium for therapy of infections due to multidrug-resistant Gram-negative bacteria. J Infect. 2008;56(3):185–190.
  • Souli M, Kontopidou FV, Papadomichelakis E, et al. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek university hospital. ClinInfect Dis. 2008;46(6):847–854.
  • Jang HJ, Kim M-N, Lee K, et al. The comparative efficacy of colistin monotherapy and combination therapy based on in vitro antimicrobial synergy in ventilator-associated pneumonia caused by multi-drug resistant Acinetobacter baumannii. Tuberc Respir Dis. 2009;67(3):212–220.
  • Falagas ME, Rafailidis PI, Ioannidou E, et al. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents. 2010;35(2):194–199.
  • Mouloudi E, Protonotariou E, Zagorianou A, et al. Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase–producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol. 2010;31(12):1250–1256.
  • Hernández-Torres A, García-Vázquez E, Gómez J, et al. Multidrug and carbapenem-resistant Acinetobacter baumannii infections: factors associated with mortality. Med Clin. 2012;138(15):650–655.
  • Şimşek F, Gedik H, Yıldırmak M, et al. Colistin against colistin-only-susceptible Acinetobacter baumannii-related infections: monotherapy or combination therapy? Indian J Med Microbiol. 2012;30(4):448–452.
  • Ku K, Pogue JM, Moshos J, et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am J Infect Control. 2012;40(10):983–987.
  • Navarro‐San Francisco C, Mora‐Rillo M, Romero‐Gómez M, et al. Bacteraemia due to OXA‐48‐carbapenemase‐producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect. 2013;19(2):E72–E9.
  • Capone A, Giannella M, Fortini D, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect. 2013;19(1):E23–E30.
  • Garnacho-Montero J, Amaya-Villar R, Gutiérrez-Pizarraya A, et al. Clinical efficacy and safety of the combination of colistin plus vancomycin for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Chemotherapy. 2013;59(3):225–231.
  • Kalin G, Alp E, Akin A, et al. Comparison of colistin and colistin/sulbactam for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. Infection. 2014;42(1):37–42.
  • Kontopidou F, Giamarellou H, Katerelos P, et al. Infections caused by carbapenem-resistant Klebsiella pneumoniae among patients in intensive care units in Greece: a multi-centre study on clinical outcome and therapeutic options. Clin Microbiol Infect. 2014;20(2):O117–O23.
  • López-Cortés L, Cisneros J, Fernández-Cuenca F, et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: analysis of a multicentre prospective cohort. J Antimicrob Chemother. 2014;69(11):3119–3126.
  • Porwal R, Gopalakrishnan R, Rajesh NJ, et al. Carbapenem resistant Gram-negative bacteremia in an Indian intensive care unit: a review of the clinical profile and treatment outcome of 50 patients. Indian J Crit Care Med. 2014;18(11):750.
  • Parchem N, Bauer K, Cook C, et al. Colistin combination therapy improves microbiologic cure in critically ill patients with multi-drug resistant Gram-negative pneumonia. Eur J Clin Microbiol. 2016;35(9):1433–1439.
  • Dickstein Y, Lellouche J, Ben Dalak Amar M, et al. Treatment outcomes of colistin-and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis. 2019;69(5):769–776.
  • Makris D, Petinaki E, Tsolaki V, et al. Colistin versus colistin combined with ampicillin-sulbactam for multiresistant Acinetobacter baumannii ventilator-associated pneumonia treatment: an open-label prospective study. Indian J Crit Care Med. 2018;22(2):67.
  • Shi H, Lee JS, Park SY, et al. Colistin plus carbapenem versus colistin monotherapy in the treatment of carbapenem-resistant Acinetobacter baumannii pneumonia. Infect Drug Resist. 2019;12:3925.
  • Nutman A, Lellouche J, Temkin E, et al. Colistin plus meropenem for carbapenem-resistant Gram-negative infections: in vitro synergism is not associated with better clinical outcomes. Clin Microbiol Infect. 2020;26(9):1185–1191.
  • Seok H, Choi WS, Lee S, et al. What is the optimal antibiotic treatment strategy for carbapenem-resistant Acinetobacter baumannii (CRAB)? A multicentre study in Korea. J Glob Antimicrob Resist. 2021;24:429–439.
  • Falagas ME, Lourida P, Poulikakos P, et al. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58(2):654–663.
  • Sy CL, Chen P-Y, Cheng C-W, et al. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. journal of microbiology, immunology and infection. J Microbiol Immunol Infect. 2022;55(3):359–386.
  • Herrmann G, Yang L, Wu H, et al. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis. 2010;202(10):1585–1592.
  • Lim TP, Lee W, Tan TY, et al. Effective antibiotics in combination against extreme drug-resistant Pseudomonas aeruginosa with decreased susceptibility to polymyxin B. PLoS One. 2011;6(12):e28177.
  • Walsh CC, Landersdorfer CB, McIntosh MP, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71(8):2218–2229.
  • Ly NS, Bulman ZP, Bulitta JB, et al. Optimization of polymyxin B in combination with doripenem To combat mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(5):2870–2880.
  • Armengol E, Asunción T, Viñas M, et al. When combined with colistin, an otherwise ineffective rifampicin–linezolid combination becomes active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Microorganisms. 2020;8(1):86.
  • Lora-Tamayo J, Murillo O, Bergen PJ, et al. Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother. 2014;69(9):2434–2442.
  • Ly NS, Bulitta JB, Rao GG, et al. Colistin and doripenem combinations against Pseudomonas aeruginosa: profiling the time course of synergistic killing and prevention of resistance. J Antimicrob Chemother. 2015;70(5):1434–1442.
  • Gunderson BW, Ibrahim KH, Hovde LB, et al. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2003;47(3):905–909.
  • Caballero VR, Abuhussain SA, Kuti JL, et al. Efficacy of human-simulated exposures of ceftolozane-tazobactam alone and in combination with amikacin or colistin against multidrug-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2018;62(5):e02384–17.
  • Bassetti M, Vena A, Croxatto A, et al. How to manage Pseudomonas aeruginosa infections. Drugs in Context Drugs Context. 2018;7:1–18.
  • Escolà-Vergé L, Pigrau C, Almirante B. Ceftolozane/tazobactam for the treatment of complicated intra-abdominal and urinary tract infections: current perspectives and place in therapy. Infect Drug Resist. 2019;12:1853-1867.
  • Tehrani KH, Martin NI. β-lactam/β-lactamase inhibitor combinations: an update. Medchemcomm. 2018;9(9):1439–1456.
  • Haidar G, Philips NJ, Shields RK, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65(1):110–120.
  • Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65(1):158–161.
  • Yao J, Wang J, Chen M, et al. Cefiderocol: an overview of its in-vitro and in-vivo activity and underlying resistant mechanisms. Front Med (Lausanne). 2021;8(741940):1–7.
  • Jean -S-S, Hsueh S-C, Lee W-S, et al. Cefiderocol: a promising antibiotic against multidrug-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther. 2019;17(5):307–309.
  • Shields RK. Case Commentary: the need for cefiderocol is clear, but are the supporting clinical data? Antimicrob Agents Chemother. 2020;64(4):1–4.
  • Stevens RW, Clancy M. Compassionate Use of cefiderocol in the treatment of an intraabdominal Infection Due to multidrug‐resistant Pseudomonas aeruginosa: a case report. Pharmacotherapy. 2019;39(11):1113–1118.
  • Wunderink RG, Matsunaga Y, Ariyasu M, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021;21(2):213–225.
  • Barnes MD, Taracila MA, Rutter JD, et al. Deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in Pseudomonas aeruginosa. mBio. 2018;9(6):e02085–18.
  • Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Gram-negative bacilli. Drugs. 2014;74(1):31–51.
  • Beirão EM, da Silva Rodrigues S, de Andrade TK, et al. Activity of ceftolozane-tazobactam and comparators against Gram-negative bacilli: results from the study for monitoring antimicrobial resistance trends (SMART–Brazil; 2016–2017). Braz J Infect Dis. 2020;24(4):310–321.
  • O’Neall D, Juhász E, Á T, et al. Ceftazidime–avibactam and ceftolozane–tazobactam susceptibility of multidrug resistant Pseudomonas aeruginosa strains in Hungary. Acta Microbiol Immunol Hung. 2020;67(1):61–65.
  • Alqaid A, Dougherty C, Ahmad S. Triple antibiotic therapy with ceftolozane/tazobactam, colistin and rifampin for pan-resistant Pseudomonas aeruginosa ventilator-associated pneumonia. The Southwest Respir Crit Care Chron. 2015;3(11):35–39.
  • Rigatto MH, Vieira FJ, Antochevis LC, et al. Polymyxin B in combination with antimicrobials lacking in vitro activity versus polymyxin B in monotherapy in critically ill patients with Acinetobacter baumannii or Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2015;59(10):6575–6580.
  • Schmid A, Wolfensberger A, Nemeth J, et al. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: systematic review and meta-analysis. Sci Rep. 2019;9(1):1–11.
  • Linden PK, Kusne S, Coley K, et al. Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2003;37(11):e154–e60.
  • Furtado GHC, d’Azevedo PA, Santos AF, et al. Intravenous polymyxin B for the treatment of nosocomial pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents. 2007;30(4):315–319.
  • Kallel H, Bahloul M, Hergafi L, et al. Colistin as a salvage therapy for nosocomial infections caused by multidrug-resistant bacteria in the ICU. Int J Antimicrob Agents. 2006;28(4):366–369.
  • Markou N, Apostolakos H, Koumoudiou C, et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care. 2003;7(5):1–6.
  • Reina R, Estenssoro E, Sáenz G, et al. Safety and efficacy of colistin in Acinetobacter and Pseudomonas infections: a prospective cohort study. Intensive Care Med. 2005;31(8):1058–1065.
  • Meng Q, Lin F, Ling B. In vitro activity of peptide antibiotics in combination with other antimicrobials on extensively drug-resistant Acinetobacter baumannii in the planktonic and biofilm cell. Front Pharmacol. 2022;13:890955.
  • Zhang H, Zhu Y, Yang N, et al. In vitro and in vivo activity of combinations of polymyxin B with other antimicrobials against carbapenem-resistant Acinetobacter baumannii. Infect Drug Resist. 2021;14:4657.
  • Hornsey M, Wareham D. In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2011;55(7):3534–3537.
  • Oleksiuk LM, Nguyen MH, Press EG, et al. In vitro responses of Acinetobacter baumannii to two-and three-drug combinations following exposure to colistin and doripenem. Antimicrob Agents Chemother. 2014;58(2):1195–1199.
  • Li J, Fu Y, Zhang J, et al. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J Chemother. 2020;32(7):359–367.
  • Soudeiha MA, Dahdouh EA, Azar E, et al. In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, Etest, and time-kill curve techniques. Front Cell Infect Microbiol. 2017;7:209.
  • Shields RK, Kwak EJ, Potoski BA, et al. High mortality rates among solid organ transplant recipients infected with extensively drug-resistant Acinetobacter baumannii: using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Diagn Microbiol Infect Dis. 2011;70(2):246–452.
  • Vidaillac C, Benichou L, Duval RE. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2012;56(9):4856–4861.
  • Fan B, Guan J, Wang X, et al. Activity of colistin in combination with meropenem, tigecycline, fosfomycin, fusidic acid, rifampin or sulbactam against extensively drug-resistant Acinetobacter baumannii in a murine thigh-infection model. PLoS One. 2016;11(6):e0157757.
  • Yilmaz EM, Sunbul M, Aksoy A, et al. Efficacy of tigecycline/colistin combination in a pneumonia model caused by extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2012;40(4):332–336.
  • Bowers DR, Cao H, Zhou J, et al. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59(5):2720–2725.
  • Cheng A, Chuang Y-C, Sun H-Y, et al. Excess mortality associated with colistin-tigecycline compared with colistin-carbapenem combination therapy for extensively drug-resistant Acinetobacter baumannii bacteremia: a multicenter prospective observational study. Crit Care Med. 2015;43(6):1194–1204.
  • Sharma R, Park TE, Moy S. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant Gram-negative organisms. Clin Ther. 2016;38(3):431–444.
  • Zhanel GG, Lawrence CK, Adam H, et al. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98.
  • Hsueh S-C, Lee Y-J, Huang Y-T, et al. In vitro activities of cefiderocol, ceftolozane/ tazobactam,ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother. 2019;74(2):380–386.
  • Stainton SM, Monogue ML, Tsuji M, et al. Efficacy of humanized cefiderocol exposures over 72 hours against a diverse group of Gram-negative isolates in the neutropenic murine thigh infection model. Antimicrob Agents Chemother. 2019;63(2):e01040–18.
  • Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–1328.
  • Shields RK, Clancy CJ, Gillis LM, et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One. 2012;7(12):e52349.
  • Park SY, Si HJ, Eom JS, et al. Survival of carbapenem-resistant Acinetobacter baumannii bacteremia: colistin monotherapy versus colistin plus meropenem. Int J Med Res. 2019;47(12):5977–5985.
  • Yilmaz GR, Guven T, Guner R, et al. Colistin alone or combined with sulbactam or carbapenem against A. baumannii in ventilator-associated pneumonia. J Infect Dev Ctries. 2015;9(5):476–485.
  • Khawcharoenporn T, Pruetpongpun N, Tiamsak P, et al. Colistin-based treatment for extensively drug-resistant Acinetobacter baumannii pneumonia. Int J Antimicrob Agents. 2014;43(4):378–382.
  • Katip W, Uitrakul S, Oberdorfer P. A comparison of colistin versus colistin plus meropenem for the treatment of carbapenem-resistant Acinetobacter baumannii in critically ill patients: a propensity score-matched analysis. Antibiotics. 2020;9(10):647.
  • Qureshi ZA, Hittle LE, O’Hara JA, et al. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clinil Infecti Dis. 2015;60(9):1295–1303.
  • Petrosillo N, Giannella M, Antonelli M, et al. Clinical experience of colistin-glycopeptide combination in critically ill patients infected with Gram-negative bacteria. Antimicrob Agents Chemother. 2014;58(2):851–858.
  • Wareham D, Gordon N, Hornsey M. In vitro activity of teicoplanin combined with colistin versus multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother. 2011;66(5):1047–1051.
  • Hornsey M, Longshaw C, Phee L, et al. In vitro activity of telavancin in combination with colistin versus Gram-negative bacterial pathogens. Antimicrob Agents Chemother. 2012;56(6):3080–3085.
  • Pogue JM, Kaye KS. Is there really no benefit to combination therapy with colistin? Expert Rev Anti Infect Ther. 2013;11(9):881–884.
  • Chen Z, Chen Y, Fang Y, et al. Meta-analysis of colistin for the treatment of Acinetobacter baumannii infection. Sci Rep. 2015;5(1):1–8.
  • Cheng I, Chen Y-H, Lai -C-C. Intravenous colistin monotherapy versus combination therapy against carbapenem-resistant Gram-negative bacteria infections: meta-analysis of randomized controlled trials. J Cin Med. 2018;7(8):208.
  • Ni W, Shao X, Di X, et al. In vitro synergy of polymyxins with other antibiotics for Acinetobacter baumannii: a systematic review and meta-analysis. Int J Antimicrob Agents. 2015;45(1):8–18.
  • Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically ill patients. Clin Infect Dis. 2017;64(5):565–571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.