912
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Exploring thresholds and interaction effects among antibiotic usage, covariates, and their effect on antibiotic resistance using an extended-spectrum β-Lactamase–producing Klebsiella pneumoniae case

ORCID Icon, , , ORCID Icon, , , , ORCID Icon & show all
Pages 777-786 | Received 24 Nov 2022, Accepted 06 Jun 2023, Published online: 23 Jun 2023

References

  • Aldeyab M, López-Lozano JM, Gould IM. Global antibiotics use and resistance. In: Babar ZUD, editor. Global pharmaceutical policy. Singapore: Palgrave Macmillan; 2020. p. 331–344. doi: 10.1007/978-981-15-2724-1_13
  • O’Neill J Antimicrobial Resistance: tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance. 2014. (cited 6 Aug 2022). Available online: https://amr-review.org/Publications.html
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(S12):S122–S129. doi: 10.1038/nm1145
  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–433. doi: 10.1128/MMBR.00016-10
  • Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis. 2002;8(4):347–354. doi: 10.3201/eid0804.010312
  • Tomson G, Vlad I. The need to look at antibiotic resistance from a health systems perspective. Ups J Med Sci. 2014;119(2):117–124. doi: 10.3109/03009734.2014.902879
  • Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol query. 2018;8:4. doi: 10.3389/fcimb.2018.00004
  • Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–1208. doi: 10.1056/NEJMoa1306801
  • Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603. doi: 10.1128/CMR.11.4.589
  • Gupta A, Ampofo K, Rubenstein D, et al. Extended spectrum β lactamase-producing klebsiella pneumoniae infections: a review of the literature. J Perinatol. 2003;23(6):439–443. doi: 10.1038/sj.jp.7210973
  • Becker L, Fuchs S, Pfeifer Y, et al. Whole genome sequence analysis of CTX-M-15 producing Klebsiella isolates allowed dissecting a polyclonal outbreak scenario. Front Microbiol. 2018;9:322. doi: 10.3389/fmicb.2018.00322
  • Paterson DL, Bonoma RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686. doi: 10.1128/CMR.18.4.657-686.2005
  • Ramphal R, Ambrose PG. Extended-Spectrum β-Lactamases and clinical outcomes: current data. Clin Infect Dis. 2006;42(Supplement_4):164–187. doi: 10.1086/500663
  • Rodríguez-Baño J, Picón E, Gijón P, et al. Community-onset bacteremia due to extended-spectrum β-lactamase–producing escherichia coli: risk factors and prognosis. Clin Infect Dis. 2010;50(1):40–48. doi: 10.1086/649537
  • Kritsotakis EI, Tsioutis C, Roumbelaki M, et al. Antibiotic use and the risk of carbapenem-resistant extended-spectrum- -lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother. 2011;66(6):1383–1392. doi: 10.1093/jac/dkr116
  • Jirjees FJ, Al-Obaidi HJ, Sartaj M, et al. Antibiotic use and resistance in hospitals: time-series analysis strategy for determining and prioritising interventions. Hosp Pharm Eur. 2020;95:13–19. Available online: https://hospitalpharmacyeurope.com/news/reviews-research/antibiotic-use-and-resistance-in-hospitals-time-series-analysis-strategy-for-determining-and-prioritising-interventions/
  • Monnet DL, López-Lozano JM, Campillos P, et al. Making sense of antimicrobial use and resistance surveillance data: application of ARIMA and transfer function models. Clin Microbiol Infect. 2001;7(Suppl 5):29–36. doi: 10.1046/j.1469-0691.2001.00071.x
  • López-Lozano JM, Monnet DL, Yagüe A, et al. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob Agents. 2000;14(1):21–31. doi: 10.1016/S0924-8579(99)00135-1
  • Monnet DL, MacKenzie FM, López-Lozano JM, et al. Antimicrobial drug use and methicillin-resistant staphylococcus aureus , aberdeen, 1996–2000. Emerg Infect Dis. 2004;10(8):1432–1441. doi: 10.3201/eid1008.020694
  • Aldeyab MA, Monnet DL, López-Lozano JM, et al. Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant Staphylococcus aureus: a time-series analysis. J Antimicrob Chemother. 2008;62(3):593–600. doi: 10.1093/jac/dkn198
  • Lopez-Lozano JM, Lawes T, Nebot C, et al. A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nat Microbiol. 2019;4(7):1160–1172. doi: 10.1038/s41564-019-0410-0
  • Lawes T, Lopez-Lozano JM, Nebot CA, et al. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: a non-linear time-series study. Lancet Infect Dis. 2015;15(12):1438–1449. doi: 10.1016/S1473-3099(15)00315-1
  • Lawes T, Lopez-Lozano JM, Nebot C, et al. Turning the tide or riding the waves? Impacts of antibiotic stewardship and infection control on MRSA strain dynamics in a Scottish region over 16 years: non-linear time series analysis. BMJ Open. 2015;5(3):e006596. doi: 10.1136/bmjopen-2014-006596
  • Hayajneh WA, Al-Azzam S, Yusef D, et al. Identification of thresholds in relationships between specific antibiotic use and carbapenem-resistant Acinetobacter baumannii (CRAb) incidence rates in hospitalized patients in Jordan. J Antimicrob Chemother. 2021;76(2):524–530. doi: 10.1093/jac/dkaa463
  • Al-Hashimy ZS, Conway BR, Al-Yaqoobi M, et al. Identifying Targets for antibiotic use for the management of carbapenem-resistant acinetobacter baumannii (CRAb) in hospitals-a multi-centre nonlinear time-series study. Antibiotics (Basel). 2022;11(6):775. doi: 10.3390/antibiotics11060775
  • Colodner R, Rock W, Chazan B, et al. Risk factors for the development of extended spectrum beta lactamase producing bacteria in non-hospitalised patients. Eur J Clin Microbiol Infect Dis. 2004;23(3):163–167. doi: 10.1007/s10096-003-1084-2
  • Graffunder EM, Preston KE, Evans AM, et al. Risk factors associated with extended-spectrum β-lactamase-producing organisms at a tertiary care hospital. J Antimicrob Chemother. 2005;56(1):139–145. doi: 10.1093/jac/dki180
  • Vibet MA, Roux J, Montassier C, et al. Systematic analysis of the relationship between antibiotic use and extended spectrum beta-lactamase resistance in enterobacteriaceae in a French Hospital: a time series analysis. Eur J Clin Microbiol Infect Dis. 2015;34(10):1957–1963. doi: 10.1007/s10096-015-2437-3
  • Kaier K, Frank U, Hagist C, et al. The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum -lactamase-producing strains: a time-series analysis. J Antimicrob Chemother. 2009;63(3):609–614. doi: 10.1093/jac/dkn534
  • Vernaz N, Huttner B, Muscionico D, et al. Modelling the impact of antibiotic use on antibiotic resistant Escherichia coli using population based data from a large hospital and surrounding community. J Antimicrob Chemother. 2011;66(4):928–935. doi: 10.1093/jac/dkq525
  • Aldeyab MA, Harbarth S, Vernaz N, et al. The impact of antibiotic use on the incidence and resistance pattern of extended spectrum beta-lactamase producing bacteria in primary and secondary healthcare settings. Br J Clin Pharmacol. 2012;74(1):171–179. doi: 10.1111/j.1365-2125.2011.04161.x
  • Coia JE, Duckworth GJ, Edwards DI, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63 Suppl 1:S1–44. Erratum in: J Hosp Infect. 2006; 64(1):97-8. doi: 10.1016/j.jhin.2006.01.001
  • Ventola CL. The antibiotic resistance crisis: part 2: management strategies and new agents. P T. 2015;40(5):344–352.
  • Lushniak BD. Antibiotic resistance: a public health crisis. Public Health Rep. 2014;129(4):314–316. doi: 10.1177/003335491412900402
  • Mathur P. Hand hygiene: back to the basics of infection control. Indian J Med Res. 2011;134(5):611–620. doi: 10.4103/0971-5916.90985
  • Allegranzi B, Pittet D. Role of hand hygiene in healthcare-associated infection prevention. J Hosp Infect. 2009;73(4):305–315. doi: 10.1016/j.jhin.2009.04.019
  • Lotfinejad N, Peters A, Tartari E, et al. Hand hygiene in health care: 20 years of ongoing advances and perspectives. Lancet Infect Dis. 2021;21(8):e209–e221. doi: 10.1016/S1473-3099(21)00383-2
  • Barrera L, Zingg W, Mendez F, et al. Effectiveness of a hand hygiene promotion strategy using alcohol-based handrub in 6 intensive care units in Colombia. Am J Infect Control. 2011;39(8):633–639. doi: 10.1016/j.ajic.2010.11.004
  • Kingston L, O’Connell NH, Dunne CP. Hand hygiene-related clinical trials reported since 2010: a systematic review. J Hosp Infect. 2016;92(4):309–320. doi: 10.1016/j.jhin.2015.11.012
  • Levy SB. Balancing the drug-resistance equation. Trends Microbiol. 1994;2(10):341–342. doi: 10.1016/0966-842X(94)90607-6
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80(3):629–661. doi: 10.1128/MMBR.00078-15
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228–236. doi: 10.1016/S1473-3099(09)70054-4
  • Wiener J, Quinn JP, Bradford PA, et al. Multiple antibiotic–resistant klebsiella and escherichia coli in nursing homes. JAMA. 1999;281(6):517–523. doi: 10.1001/jama.281.6.517
  • Lee SO, Lee ES, Park SY, et al. Reduced use of third-generation cephalosporins decreases the acquisition of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2004;25(10):832–837. doi: 10.1086/502304
  • Lautenbach E, Patel JB, Bilker WB, et al. Extended-spectrum -lactamase-producing escherichia coli and klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162–1171. doi: 10.1086/319757
  • Nham E, Huh K, Cho SY, et al. Characteristics and clinical outcomes of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteremia in cancer patients. Infect Chemother. 2020;52(1):59–69. doi: 10.3947/ic.2020.52.1.59
  • Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi: 10.1111/j.1469-0691.2011.03570.x
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing—Twenty-Sixth Edition: m100. Wayne PA USA: CLSI; 2016.
  • WHO Collaborating Centre for Drug Statistics Methodology, Guidelines for ATC classification and DDD assignment, 2023. Oslo, 2022. cited 1 Apr 2023. https://www.whocc.no/atc_ddd_index_and_guidelines/guidelines/
  • Friedman J. Multivariate adaptive regression splines. Ann Statist. 1991;19(1):1–67. doi: 10.1214/aos/1176347963.
  • Hastie T, Tibshirani R. Generalized additive models. London: Chapman & Hall; 1990.
  • Liu L-M. Time Series Analysis and Forecasting. 2nd edn ed. River Forest IL USA: Scientific Computing Associates Corp; 2009.
  • Hecker MT, Aron DC, Patel NP, et al. Unnecessary use of antimicrobials in hospitalized patients: current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch Intern Med. 2003;163(8):972–978. doi: 10.1001/archinte.163.8.972
  • Davey P, Marwick CA, Scott CL, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2017;2(2): CD003543. doi: 10.1002/14651858.CD003543.pub4
  • Haber M, Levin BR, Kramarz P. Antibiotic control of antibiotic resistance in hospitals: a simulation study. BMC Infect Dis. 2010;10(1):254. doi: 10.1186/1471-2334-10-254
  • Aldeyab MA, Harbarth S, Vernaz N, et al. Quasiexperimental study of the effects of antibiotic use, gastric acid-suppressive agents, and infection control practices on the incidence of Clostridium difficile-associated diarrhea in hospitalized patients. Antimicrob Agents Chemother. 2009;53(5):2082–2088. doi: 10.1128/AAC.01214-08
  • Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–1098. doi: 10.1016/S1473-3099(13)70318-9
  • Dellit TH, Owens RC, McGowan JE, et al. Infectious diseases society of america and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–177. doi: 10.1086/510393
  • Muto CA, Jernigan JA, Ostrowsky BE, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol. 2003;24(5):362–386. doi: 10.1086/502213
  • Lemmen SW, Lewalter K. Antibiotic stewardship and horizontal infection control are more effective than screening, isolation and eradication. Infection. 2018;46(5):581–590. doi: 10.1007/s15010-018-1137-1
  • Wilson J. Infection control in clinical practice. 3rd ed. London: Bailliere Tindall; 2006.
  • Ya K Z, Win PTN, Bielicki J, et al. Association between antimicrobial stewardship programs and antibiotic use globally: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(2):e2253806. doi: 10.1001/jamanetworkopen.2022.53806
  • Goto M, O’Shea AMJ, Livorsi DJ, et al. The effect of a nationwide infection control program expansion on hospital-onset gram-negative rod bacteremia in 130 veterans health administration medical centers: an interrupted time-series analysis. Clin Infect Dis. 2016;63(5):642–650. doi: 10.1093/cid/ciw423
  • Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme Lancet. 2000;356(9238):1307–1312. doi: 10.1016/S0140-6736(00)02814-2
  • Gordin FM, Schultz ME, Huber RA, et al. Reduction in nosocomial transmission of drug-resistant bacteria after introduction of an alcohol-based handrub. Infect Control Hosp Epidemiol. 2005;26(7):650–653. doi: 10.1086/502596
  • Pittet D, Allegranzi B, Sax H, et al. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect Dis. 2006;6(10):641–652. doi: 10.1016/S1473-3099(06)70600-4
  • Aldeyab MA, McElnay JC, Scott MG, et al. Hospital antibiotic use and its relationship to age-adjusted comorbidity and alcohol-based hand rub consumption. Epidemiol Infect. 2014;142(2):404–408. doi: 10.1017/S0950268813001052
  • Aldeyab MA, McElnay JC, Scott MG, et al. A modified method for measuring antibiotic use in healthcare settings: implications for antibiotic stew-ardship and benchmarking. J Antimicrob Chemother. 2014;69(4):1132–1141. doi: 10.1093/jac/dkt458
  • Conlon-Bingham GM, Aldeyab M, Scott M, et al. Effects of antibiotic cycling policy on incidence of healthcare-associated MRSA and clostridioides difficile infection in secondary healthcare settings. Emerg Infect Dis. 2019;25(1):52–62. doi: 10.3201/eid2501.180111