117
Views
0
CrossRef citations to date
0
Altmetric
Meta-analysis

Phenotypic, genotypic, and metabolic resistance mechanisms of ESKAPE bacteria to chemical disinfectants: a systematic review and meta-analysis

, &
Pages 1097-1123 | Received 31 Dec 2022, Accepted 01 Sep 2023, Published online: 14 Sep 2023

References

  • Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11(3):297–308. doi: 10.1586/eri.13.12
  • De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3). doi: 10.1128/CMR.00181-19
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi: 10.1179/2047773215Y.0000000030
  • Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:1–8. doi: 10.1155/2016/2475067
  • Mulani MS, Kamble EE, Kumkar SN, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 2019;10:539. doi: 10.3389/fmicb.2019.00539
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Rozman U, Pušnik M, Kmetec S, et al. Reduced susceptibility and increased resistance of bacteria against disinfectants: a systematic review. Microorganisms. 2021;9(12):2550. doi: 10.3390/microorganisms9122550
  • CDC. Chemical Disinfectants. Centers Disinfectants Control Prev. 2016. Available from: https://www.cdc.gov/infectioncontrol/guidelines/di.sinfection/disinfection-methods/chemical.html
  • Curran ET, Wilkinson M, Bradley T. Chemical disinfectants: controversies regarding their use in low risk healthcare environments (part 1). J Infect Prev. 2019;20(2):76–82. Available from. http://journals.sagepub.com/doi/10.1177/1757177419828139
  • Maillard J-Y. Resistance of bacteria to biocides. In: Aarestrup F, Schwarz S Shen J, editors. Microbiol spectr. 2018; 6. Available from: https://journals.asm.org/doi/10.1128/microbiolspec.ARBA-0006-2017
  • Vijayakumar R, Sandle T. A review on biocide reduced susceptibility due to plasmid‐borne antiseptic‐resistant genes—special notes on pharmaceutical environmental isolates. J Appl Microbiol. 2019;126(4):1011–1022. doi: 10.1111/jam.14118
  • Chapman JS. Biocide resistance mechanisms. Int Biodeterior Biodegrad. 2003;51(2):133–138. doi: 10.1016/S0964-8305(02)00097-5
  • Mc Carlie S, Boucher CE, Bragg RR. Molecular basis of bacterial disinfectant resistance. Drug Resist Updat. 2020;48:100672. doi: 10.1016/j.drup.2019.100672
  • Gnanadhas DP, Marathe SA, Chakravortty D. Biocides – resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs. 2013;22(2):191–206. doi: 10.1517/13543784.2013.748035
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;n71. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj.n71
  • Wells G, Shea B, O’Connell D, et al. The newcastle-otawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. Ottawa, Ontario, Canada Ottawa Hosp. Res. Inst. 2022. Available from: https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp
  • Leeflang MMG. Systematic reviews and meta-analyses of diagnostic test accuracy. Clin Microbiol Infect. 2014;20(2):105–113. doi: 10.1111/1469-0691.12474
  • Biswas D, Tiwari M, Tiwari V. Molecular mechanism of antimicrobial activity of chlorhexidine against carbapenem-resistant Acinetobacter baumannii. PLoS one. 2019;14:e0224107.
  • Cochran WL, Suh S-J, McFeters GA, et al. Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J Appl Microbiol. 2000;88(3):546–553. doi: 10.1046/j.1365-2672.2000.00995.x
  • Conceição T, de Lencastre H, Aires-de-Sousa M. Prevalence of biocide resistance genes and chlorhexidine and mupirocin non-susceptibility in Portuguese hospitals during a 31-year period (1985–2016). J Glob Antimicrob Resist. 2021;24:169–174. doi: 10.1016/j.jgar.2020.12.010
  • Conceição T, Coelho C, de Lencastre H, et al. High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother. 2016;60(1):678–681. doi: 10.1128/AAC.02140-15
  • Curiao T, Marchi E, Viti C, et al. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae Clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother. 2015;59(6):3413–3423. doi: 10.1128/AAC.00187-15
  • DeMarco CE, Cushing LA, Frempong-Manso E, et al. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(9):3235–3239. doi: 10.1128/AAC.00430-07
  • Duarte B, Pereira AP, Freitas AR, et al. 2CS-CHXT operon Signature of chlorhexidine tolerance among Enterococcus faecium isolates. Appl Environ Microbiol. 2019;85(23): e01589–19. doi: 10.1128/AEM.01589-19
  • Fraud S, Campigotto AJ, Chen Z, et al. MexCD-OprJ multidrug efflux System of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging Agents dependent upon the AlgU stress response sigma factor. Antimicrob Agents Chemother. 2008;52(12):4478–4482. doi: 10.1128/AAC.01072-08
  • Goodarzi R, Yousefimashouf R, Taheri‬ M, et al. Susceptibility to biocides and the prevalence of biocides resistance genes in clinical multidrug-resistant Pseudomonas aeruginosa isolates from Hamadan, Iran. Mol Biol Rep. 2021;48(6):5275–5281. doi: 10.1007/s11033-021-06533-4
  • Guang-Sen S, Boost M, Cho P. Prevalence of antiseptic resistance genes increases in staphylococcal isolates from orthokeratology lens wearers over initial six-month period of use. Eur J Clin Microbiol Infect Dis. 2016;35(6):955–962. doi: 10.1007/s10096-016-2622-z
  • Guérin-Méchin L, Leveau J-Y, Dubois-Brissonnet F. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol Res. 2004;159(1):51–57. doi: 10.1016/j.micres.2004.01.003
  • Guerin-Mechin L, Dubois-Brissonnet F, Heyd B, et al. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J Appl Microbiol. 1999;87(5):735–742. doi: 10.1046/j.1365-2672.1999.00919.x
  • Guo W, Shan K, Xu B, et al. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health. 2015;109(4):184–192. doi: 10.1179/2047773215Y.0000000022
  • Hassett DJ, Elkins JG, Ma J-F, et al . Pseudomonas aeruginosa biofilm sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. 1999. p. 599–608. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0076687999100466
  • Huet AA, Raygada JL, Mendiratta K, et al. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology. 2008;154(10):3144–3153. doi: 10.1099/mic.0.2008/021188-0
  • Ignak S, Nakipoglu Y, Gurler B. Frequency of antiseptic resistance genes in clinical staphycocci and enterococci isolates in Turkey. Antimicrob Resist Infect Control. 2017;6(1):88. doi: 10.1186/s13756-017-0244-6
  • Lakkis C, Fleiszig SMJ. Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity. J Clin Microbiol. 2001;39(4):1477–1486. doi: 10.1128/JCM.39.4.1477-1486.2001
  • Lin F, Xu Y, Chang Y, et al. Molecular characterization of reduced susceptibility to biocides in Clinical isolates of Acinetobacter baumannii. Front Microbiol. 2017;8.
  • Liu Q, Liu M, Wu Q, et al. Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. Scand J Infect Dis. 2009;41(6–7):403–409. doi: 10.1080/00365540902856545
  • Liu WJ, Fu L, Huang M, et al. Frequency of antiseptic resistance genes and reduced susceptibility to biocides in carbapenem-resistant Acinetobacter baumannii. J Med Microbiol. 2017;66(1):13–17. doi: 10.1099/jmm.0.000403
  • Liu Q, Zhao H, Han L, et al. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis. 2015;82(4):278–283. doi: 10.1016/j.diagmicrobio.2015.03.023
  • Loughlin MF, Jones MV, Lambert PA. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother. 2002;49(4):631–639. doi: 10.1093/jac/49.4.631
  • Mahzounieh M, Khoshnood S, Ebrahimi A, et al. Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. Isolated from burn patients. Jundishapur J Nat Pharm Prod. 2014;9(2). doi: 10.17795/jjnpp-15402
  • Méchin L, Dubois‐Brissonnet F, Heyd B, et al. Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol. 1999;86(5):859–866. doi: 10.1046/j.1365-2672.1999.00770.x
  • Naparstek L, Carmeli Y, Chmelnitsky I, et al. Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. J Hosp Infect. 2012;81(1):15–19. doi: 10.1016/j.jhin.2012.02.007
  • Guzmán Prieto AM, Wijngaarden J, Braat JC, et al. The two-component System ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother. 2017;61(5):61. doi: 10.1128/AAC.02122-16
  • Rajamohan G, Srinivasan VB, Gebreyes WA. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2010;65(9):1919–1925. doi: 10.1093/jac/dkq195
  • Rostami T, Ranjbar M, Ghourchian S, et al. Upregulation of abe M, amvA ,and qacEΔ1 efflux pump genes associated with resistance of Acinetobacter baumannii strains to disinfectants. Heal Sci Reports. 2021;4(4):4. doi: 10.1002/hsr2.395
  • Sekiguchi J, Hama T, Fujino T, et al. Detection of the antiseptic- and disinfectant-resistance genes qacA, qacB, and qacC in methicillin-resistant Staphylococcus aureus isolated in a Tokyo hospital. Jpn J Infect Dis. 2004;57(6):288–291.
  • Sidhu MS, Heir E, Leegaard T, et al. Frequency of disinfectant resistance genes and genetic linkage with β-Lactamase transposon Tn 552 among Clinical Staphylococci. Antimicrob Agents Chemother. 2002;46(9):2797–2803. doi: 10.1128/AAC.46.9.2797-2803.2002
  • Small DA, Chang W, Toghrol F, et al. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2007;74(1):176–185. doi: 10.1007/s00253-006-0644-7
  • Taheri N, Ardebili A, Amouzandeh-Nobaveh A, et al. Frequency of antiseptic resistance among Staphylococcus aureus and coagulase-negative Staphylococci isolated from a University Hospital in central Iran. Oman Med J. 2016;31(6):426–432. doi: 10.5001/omj.2016.86
  • Tetard A, Zedet A, Girard C, et al. Cinnamaldehyde induces expression of efflux pumps and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(10): doi: 10.1128/AAC.01081-19
  • Uzunbayir-Akel N, Tekintas Y, Yilmaz FF, et al. Effects of disinfectants and ciprofloxacin on quorum sensing genes and biofilm of clinical Pseudomonas aeruginosa isolates. J Infect Public Health. 2020;13(12):1932–1938. doi: 10.1016/j.jiph.2020.10.002
  • Vali L, Dashti AA, Mathew F, et al. Characterization of heterogeneous MRSA and MSSA with reduced susceptibility to chlorhexidine in Kuwaiti hospitals. Front Microbiol. 2017;8. doi: 10.3389/fmicb.2017.01359
  • Vijayakumar R, Sandle T, Al-Aboody MS, et al. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii — a first report from the Kingdom of Saudi Arabia. J Infect Public Health. 2018;11(6):812–816. doi: 10.1016/j.jiph.2018.05.011
  • Youssef CRB, Kadry AA, Shaker GH, et al. The alarming association between antibiotic resistance and reduced susceptibility to biocides in nosocomial MRSA isolates from two regional hospitals in Egypt. Arch Microbiol. 2021;203(6):3295–3303. doi: 10.1007/s00203-021-02314-6
  • Yu K, Zhang Y, Xu W, et al. Hyper-expression of the efflux pump gene adeB was found in Acinetobacter baumannii with decreased triclosan susceptibility. J Glob Antimicrob Resist 2020;22:367–373. doi: 10.1016/j.jgar.2020.02.027
  • Zhang Y, Zhao Y, Xu C, et al. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int J Antimicrob Agents. 2019;53(6):864–867. doi: 10.1016/j.ijantimicag.2019.02.012
  • Zhu L, Lin J, Ma J, et al. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother. 2010;54(2):689–698. doi: 10.1128/AAC.01152-09
  • Zmantar T, Kouidhi B, Hentati H, et al. Detection of disinfectant and antibiotic resistance genes in Staphylococcus aureus isolated from the oral cavity of Tunisian children. Ann Microbiol. 2012;62(1):123–128. doi: 10.1007/s13213-011-0236-3
  • Tong C, Hu H, Chen G, et al. Chlorine disinfectants promote microbial resistance in Pseudomonas sp. Environ Res Available from. 2021;199:111296. doi: 10.1016/j.envres.2021.111296
  • Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect. 1999;43:S57–S68. doi: 10.1016/S0195-6701(99)90066-X
  • Chen Y, Pi B, Zhou H, et al. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J Med Microbiol. 2009;58(8):1086–1091. doi: 10.1099/jmm.0.008524-0
  • Wisplinghoff H, Schmitt R, Wöhrmann A, et al. Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect. 2007;66(2):174–181. doi: 10.1016/j.jhin.2007.02.016
  • Knobler S, Lemon S, Najafi M. editors. The resistance phenomenon in microbes and Infectious disease vectors-chapter 5: factors contributing to the emergence of resistance. Washington DC: National Academies Press; 2003. Available from: http://www.nap.edu/catalog/10651
  • Tenover FC Antimicrobial susceptibility Testing☆. Ref Modul Biomed Sci. Elsevier; 2015. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128012383024867
  • European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9(8):ix–xv. doi:10.1046/j.1469-0691.2003.00790.x
  • Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–175. doi: 10.1038/nprot.2007.521
  • Wu G, Yang Q, Long M, et al. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J Antibiot (Tokyo). 2015;68(11):661–665. doi: 10.1038/ja.2015.51
  • Chitsaz M, Brown MH. The role played by drug efflux pumps in bacterial multidrug resistance. In: Venter H, editor. Essays Biochem. 2017: Vol. 61p. 127–139. Available from: https://portlandpress.com/essaysbiochem/article/61/1/127/78502/The-role-played-by-drug-efflux-pumps-in-bacterial
  • Piddock LV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19(2):382–402. Available from: https://journals.asm.org/doi/10.1128/CMR.19.2.382-402.2006
  • Wassenaar T, Ussery D, Nielsen L, et al. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol. 2015;5(1):44–61. doi: 10.1556/EuJMI-D-14-00038
  • Alam MM, Kobayashi N, Uehara N, et al. Analysis on distribution and genomic diversity of high-level antiseptic resistance genes qacA and qacB in human Clinical isolates of Staphylococcus aureus. Microb Drug Resist. 2003;9(2):109–121. doi: 10.1089/107662903765826697
  • Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2009;69(12):1555–1623. doi: 10.2165/11317030-000000000-00000
  • Briaud P, Baude J, Bastien S, et al. NorK, a novel norfloxacin efflux pump in Staphylococcus aureus bioRxiv. 2019;850768. Available from: http://biorxiv.org/content/early/2019/11/24/850768.abstract
  • Abuzaid AA, Amyes SGB. The genetic environment of the antiseptic resistance genes qacEΔ1 and cepA in Klebsiella pneumoniae. J Chemother. 2015;27(3):139–144. doi: 10.1179/1973947814Y.0000000181
  • Sharma G, Rao S, Bansal A, et al. Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals. 2014;42(1):1–7. doi: 10.1016/j.biologicals.2013.11.001
  • Laverty G, Gorman S, Gilmore B. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens. 2014;3(3):596–632. doi: 10.3390/pathogens3030596
  • Sidhu MS, Heir E, Sørum H, et al. Genetic linkage between resistance to quaternary ammonium compounds and β -lactam antibiotics in food-related Staphylococcus spp. Microb Drug Resist. 2001;7(4):363–371. doi: 10.1089/10766290152773374
  • GREENWOOD D. Phenotypic resistance to antimicrobial agents. J Antimicrob Chemother. 1985;15(6):653–654. doi: 10.1093/jac/15.6.653
  • Russell AD, Hammond SA, Morgan JR. Bacterial resistance to antiseptics and disinfectants. J Hosp Infect. 1986;7(3):213–225. Available from. doi: 10.1016/0195-6701(86)90071-X
  • Maillard J-Y. Bacterial target sites for biocide action. J Appl Microbiol. 2002;92(Suppl:16S–27S):16S–27S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12000609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.