140
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Synergistic effect of eravacycline combined with fluconazole against resistant Candida albicans in vitro and in vivo

, , , , &
Pages 1259-1267 | Received 20 Aug 2023, Accepted 29 Sep 2023, Published online: 20 Oct 2023

References

  • Wambaugh MA, Denham ST, Ayala M, et al. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. Elife. 2020;9: doi: 10.7554/eLife.54160
  • WHO. WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization; 2022.
  • Amorim-Vaz S, Tran Vdu T, Pradervand S, et al. RNA enrichment method for quantitative transcriptional analysis of pathogens in vivo applied to the fungus Candida albicans. MBio. 2015;6(5):e00942–00915. doi: 10.1128/mBio.00942-15
  • Poulain PD. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol. 2015;41(2):208–217. doi: 10.3109/1040841X.2013.813904
  • Tadec L, Talarmin JP, Gastinne T, et al. Epidemiology, risk factor, species distribution, antifungal resistance and outcome of candidemia at a single French hospital: a 7-year study. Mycoses. 2016;59(5):296–303. doi: 10.1111/myc.12470
  • Lohse MB, Gulati M, Johnson AD, et al. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. doi: 10.1038/nrmicro.2017.107
  • WHO. Antimicrobial resistance: global report on surveillance. WHO, Geneva Switzerland. 2014.
  • Suchodolski J, Krasowska A. Fructose induces fluconazole resistance in Candida albicans through activation of Mdr1 and Cdr1 transporters. Int J Mol Sci. 2021;22(4):2127. doi: 10.3390/ijms22042127
  • Li X, Zhang N, Zhang L, et al. Synergy and mechanism of leflunomide plus fluconazole against resistant Candida albicans: an in vitro study. Infect Drug Resist. 2023;16:4147–4158. doi: 10.2147/IDR.S415229
  • Saadeh HA, Mubarak MS. Hybrid drugs as potential combatants against drug-resistant microbes: a review. Curr Top Med Chem. 2017;17(8):895–906. doi: 10.2174/1568026616666160927155251
  • Chen X, Ren B, Chen M, et al. NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol. 2016;12(7):e1004975. doi: 10.1371/journal.pcbi.1004975
  • Gao L, Sun Y, Yuan M, et al. In vitro and in vivo study on the synergistic effect of minocycline and azoles against pathogenic fungi. Antimicrob Agents Chemother. 2020;64(6): doi: 10.1128/AAC.00290-20
  • Gao Y, Zhang Z, Lun Z, et al. Synergistic effects of fluconazole combined with doxycycline against dual-species cultures of Candida albicans and Staphylococcus epidermidis and the mechanisms of action. Microb Drug Resist. 2022;28(5):525–535. doi: 10.1089/mdr.2021.0301
  • Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, et al. Evaluation of Eravacycline: a novel fluorocycline. Pharmacotherapy. 2020;40(3):221–238. doi: 10.1002/phar.2366
  • CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. p. M27–Ed4.
  • Savage KA, Parquet MC, Allan DS, et al. Iron restriction to clinical isolates of Candida albicans by the novel chelator DIBI inhibits growth and increases sensitivity to azoles in vitro and in vivo in a murine model of experimental vaginitis. Antimicrob Agents Chemother. 2018;62(8): doi: 10.1128/AAC.02576-17
  • Tobudic S, Kratzer C, Lassnigg A, et al. In vitro activity of antifungal combinations against Candida albicans biofilms. J Antimicrob Chemother. 2010;65(2):271–274. doi: 10.1093/jac/dkp429
  • Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003;52(1):1. doi: 10.1093/jac/dkg301
  • Li X, Wu X, Gao Y, et al. Synergistic effects and mechanisms of combined treatment with harmine hydrochloride and azoles for resistant Candida albicans. Front Microbiol. 2019;10:2295. doi: 10.3389/fmicb.2019.02295
  • Ge L, Liu S, Xie L, et al. Differential mRNA expression profiling of oral squamous cell carcinoma by high-throughput RNA sequencing. J Biomed Res. 2015;29(5):397–404. doi: 10.7555/JBR.29.20140088
  • El Zakhem A, Mahmoud O, Zakhour J, et al. The impact of COVID-19 on the epidemiology and outcomes of candidemia: a retrospective study from a tertiary Care center in Lebanon. J Fungi (Basel). 2023;9(7):769.
  • Routsi C, Meletiadis J, Charitidou E, et al. Epidemiology of candidemia and fluconazole resistance in an ICU before and during the COVID-19 pandemic Era. Antibiotics. 2022;11(6):771. doi: 10.3390/antibiotics11060771
  • Szekely J, Rakchang W, Rattanaphan P, et al. Fluconazole and echinocandin resistance of Candida species in invasive candidiasis at a university hospital during pre-COVID-19 and the COVID-19 outbreak. Epidemiol Infect. 2023;151:e146. doi: 10.1017/S0950268823001346
  • Fernandes KE, Weeks K, Carter DA. Lactoferrin is broadly active against yeasts and highly synergistic with Amphotericin B. Antimicrob Agents Chemother. 2020;64(5). doi: 10.1128/AAC.02284-19
  • Trevijano-Contador N, Herrero-Fernandez I, Garcia-Barbazan I, et al. Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella. Virulence. 2015;6(1):66–74. doi: 10.4161/21505594.2014.986412
  • Li H, Zhang C, Liu P, et al. In vitro interactions between fluconazole and minocycline against mixed cultures of Candida albicans and staphylococcus aureus. J Microbiol Immunol Infect. 2015;48(6):655–661. doi: 10.1016/j.jmii.2014.03.010
  • Shi W, Chen Z, Chen X, et al. The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitro interaction of antifungal and antibacterial agents. FEMS Yeast Res. 2010;10(7):885–893. doi: 10.1111/j.1567-1364.2010.00664.x
  • Legrand M, Chan CL, Jauert PA, et al. Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot Cell. 2007;6(12):2194–2205. doi: 10.1128/EC.00299-07
  • Chauhan N, Visram M, Cristobal-Sarramian A, et al. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression. Proc Natl Acad Sci U S A. 2015;112(10):E1077–1085. doi: 10.1073/pnas.1423175112
  • O’Sullivan JM, Mihr MJ, Santos MA, et al. The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment. Gene. 2001;275(1):133–140. doi: 10.1016/S0378-1119(01)00632-1
  • Wightman R, Bates S, Amornrrattanapan P, et al. In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Bio. 2004;164(4):581–591. doi: 10.1083/jcb.200307176
  • Vidan S, Mitchell AP. Stimulation of yeast meiotic gene expression by the glucose-repressible protein kinase Rim15p. Mol Cell Biol. 1997;17(5):2688–2697. doi: 10.1128/MCB.17.5.2688
  • Das S, Bhuyan R, Goswami AM, et al. Kinome analyses of Candida albicans, C. parapsilosis and C. tropicalis enable novel kinases as therapeutic drug targets in candidiasis. Gene. 2021;780:145530. doi: 10.1016/j.gene.2021.145530
  • Kontoyiannis DP, Sagar N, Hirschi KD. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1999;43(11):2798–2800. doi: 10.1128/AAC.43.11.2798
  • Martinez-Gomariz M, Perumal P, Mekala S, et al. Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of Candida albicans. Proteomics. 2009;9(8):2230–2252. doi: 10.1002/pmic.200700594
  • Chiang LY, Sheppard DC, Bruno VM, et al. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell Microbiol. 2007;9(1):233–245. doi: 10.1111/j.1462-5822.2006.00784.x
  • Umeyama T, Kaneko A, Nagai Y, et al. Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Mol Microbiol. 2005;55(2):381–395. doi: 10.1111/j.1365-2958.2004.04405.x
  • Nett JE, Lepak AJ, Marchillo K, et al. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis. 2009;200(2):307–313. doi: 10.1086/599838
  • Gale CA, Leonard MD, Finley KR, et al. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae. Microbiology (Reading). 2009;155(Pt 12):3847–3859. doi: 10.1099/mic.0.033233-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.