320
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical trials aimed at HIV cure or remission: new pathways and lessons learned

, &
Pages 1227-1243 | Received 23 Jun 2023, Accepted 18 Oct 2023, Published online: 24 Oct 2023

References

  • Zuo L, Liu K, Liu H, et al. Trend of HIV-1 drug resistance in China: a systematic review and meta-analysis of data accumulated over 17 years (2001-2017). EClinicalMedicine. 2020 Jan;18:100238.
  • Bertagnolio S, Hermans L, Jordan MR, et al. Clinical impact of pretreatment human immunodeficiency virus drug resistance in people initiating nonnucleoside reverse transcriptase inhibitor-containing antiretroviral therapy: a systematic review and meta-analysis. J Infect Dis. 2021 Aug 2;224(3):377–388. doi: 10.1093/infdis/jiaa683
  • Dahabieh MS, Battivelli E, Verdin E. Understanding HIV latency: the road to an HIV cure. Annu Rev Med. 2015;66(1):407–421. doi: 10.1146/annurev-med-092112-152941
  • Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection. Nat Rev Microbiol. 2023 Oct;21(10):657–670. doi: 10.1038/s41579-023-00914-1
  • Hütter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009 Feb 12;360(7):692–698. doi: 10.1056/NEJMoa0802905
  • Gupta RK, Abdul-Jawad S, McCoy LE, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. 2019 Apr;568(7751):244–248. doi: 10.1038/s41586-019-1027-4
  • Hsu J, Van Besien K, Glesby MJ, et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell. 2023 Mar 16;186(6):1115–1126.e8. doi: 10.1016/j.cell.2023.02.030
  • Dickter J, Cardoso SA, Li S, et al. The ‘city of Hope’ patient: prolonged HIV-1 remission without antiretrovirals (ART) after allogeneic hematopoietic stem cell transplantation (aHCT) of CCR5-Î?32/Î?32 donor cells for acute myelogenous leukemia (AML) AIDS 20222022. [28.09.23] Available from:. https://programme.aids2022.org/Abstract/Abstract/?abstractid=12508.
  • Jensen BO, Knops E, Cords L, et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat Med. 2023 Mar;29(3):583–587. doi: 10.1038/s41591-023-02213-x
  • Li JZ, Blankson JN. How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. J Clin Invest. [2021 Jun 1];131(11). doi: 10.1172/JCI149414
  • Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. ALIVE Stud Sci. 1996 Sep 27;273(5283):1856–1862.
  • Saez-Cirion A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLOS Pathogens. 2013 Mar;9(3):e1003211. doi: 10.1371/journal.ppat.1003211
  • McMahon J, Lewin SR, Rasmussen TA. Viral, inflammatory, and reservoir characteristics of posttreatment controllers. Curr Opin HIV AIDS. 2021 Sep 1;16(5):249–256. doi: 10.1097/COH.0000000000000699
  • Siliciano JD, Siliciano RFIn vivo dynamics of the latent reservoir for HIV-1: new insights and implications for cureAnnu Rev Pathol2021 Nov 4;17:271–294
  • Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011 Sep;1(1):a007096. doi: 10.1101/cshperspect.a007096
  • Clark IC, Mudvari P, Thaploo S, et al. HIV silencing and cell survival signatures in infected T cell reservoirs. Nature. 2023 Feb;614(7947):318–325. doi: 10.1038/s41586-022-05556-6
  • Sun W, Gao C, Hartana CA, et al. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Nature. 2023 Feb;614(7947):309–317. doi: 10.1038/s41586-022-05538-8
  • Veenhuis RT, Abreu CM, Costa PAG, et al. Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nat Microbiol. 2023 May;8(5):833–844. doi: 10.1038/s41564-023-01349-3
  • Cochrane CR, Angelovich TA, Byrnes SJ, et al. Intact HIV proviruses persist in the brain despite viral suppression with ART. Ann Neurol. 2022 Oct;92(4):532–544. doi: 10.1002/ana.26456
  • Simonetti FR, Zhang H, Soroosh GP, et al. Antigen-driven clonal selection shapes the persistence of HIV-1-infected CD4+ T cells in vivo. J Clin Investig. 2021 Feb 1;131(3). doi: 10.1172/JCI145254
  • Reeves DB, Duke ER, Wagner TA, et al. A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun. 2018 Nov 16;9(1):4811. doi: 10.1038/s41467-018-06843-5
  • Maldarelli F, Wu X, Su L, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014 Jul 11;345(6193):179–183. doi: 10.1126/science.1254194
  • Bosque A, Famiglietti M, Weyrich AS, et al. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLOS Pathog. 2011 Oct;7(10):e1002288. doi: 10.1371/journal.ppat.1002288
  • Vandergeeten C, Fromentin R, DaFonseca S, et al. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood. 2013 May 23;121(21):4321–4329. doi: 10.1182/blood-2012-11-465625
  • Gubser C, Chiu C, Lewin SR, et al. Immune checkpoint blockade in HIV. EBioMedicine. 2022 Feb;76:103840.
  • Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006 Oct;12(10):1198–1202. doi: 10.1038/nm1482
  • Kaufmann DE, Kavanagh DG, Pereyra F, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007 Nov;8(11):1246–1254. doi: 10.1038/ni1515
  • Chew GM, Fujita T, Webb GM, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLOS Pathogens. 2016 Jan;12(1):e1005349. doi: 10.1371/journal.ppat.1005349
  • Fromentin R, Bakeman W, Lawani MB, et al. CD4+ T cells expressing PD-1, TIGIT and LAG-3 contribute to HIV persistence during ART. PLOS Pathogens. 2016;12(7):e1005761. doi: 10.1371/journal.ppat.1005761
  • Fenwick C, Joo V, Jacquier P, et al. T-cell exhaustion in HIV infection. Immunol Rev. 2019 Nov;292(1):149–163. doi: 10.1111/imr.12823
  • Deeks SG. HIV: shock and kill. Nature. 2012 Jul 25;487(7408):439–440. doi: 10.1038/487439a
  • Rasmussen TA, Søgaard OS. Clinical interventions in HIV cure research. Adv Exp Med Biol. 2018;1075:285–318.
  • Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012 Jul 25;487(7408):482–485. doi: 10.1038/nature11286
  • Elliott JH, Wightman F, Solomon A, et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLOS Pathog. 2014 Oct;10(10):e1004473. doi: 10.1371/journal.ppat.1004473
  • Archin NM, Bateson R, Tripathy MK, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis. 2014 Sep 1;210(5):728–735. doi: 10.1093/infdis/jiu155
  • Archin NM, Kirchherr JL, Sung JA, et al. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest. 2017 Aug 1;127(8):3126–3135. doi: 10.1172/JCI92684
  • Rasmussen TA, Tolstrup M, Brinkmann CR, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014 Oct;1(1):e13–21. doi: 10.1016/S2352-3018(14)70014-1
  • Søgaard OS, Graversen ME, Leth S, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLOS Pathog. 2015 Sep;11(9):e1005142. doi: 10.1371/journal.ppat.1005142
  • Leth S, Schleimann MH, Nissen SK, et al. Combined effect of vacc-4x, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV. 2016 Oct;3(10):e463–72. doi: 10.1016/S2352-3018(16)30055-8
  • Fidler S, Stöhr W, Pace M, et al. Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet. 2020 Mar 14;395(10227):888–898. doi: 10.1016/S0140-6736(19)32990-3
  • Crowell TA, Fletcher JL, Sereti I, et al. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation. J Int AIDS Soc. 2016;19(1):21163. doi: 10.7448/IAS.19.1.21163
  • Ananworanich J, Chomont N, Eller LA, et al. HIV DNA set point is rapidly established in acute HIV infection and dramatically reduced by early ART. EBioMedicine. 2016 Sep;11:68–72.
  • Deng K, Pertea M, Rongvaux A, et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature. 2015 Jan 15;517(7534):381–385. doi: 10.1038/nature14053
  • Cao W, Mehraj V, Trottier B, et al. Early initiation rather than prolonged duration of antiretroviral therapy in HIV infection contributes to the normalization of CD8 T-Cell counts. Clin Infect Dis. 2016 Jan 15;62(2):250–257. doi: 10.1093/cid/civ809
  • Mothe B, Rosás-Umbert M, Coll P, et al. Hivconsv vaccines and Romidepsin in early-treated HIV-1-Infected individuals: safety, immunogenicity and effect on the viral reservoir (study BCN02). Front Immunol. 2020;11:823. doi: 10.3389/fimmu.2020.00823
  • Bailón L, Llano A, Cedeño S, et al. Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial. Nat Med. 2022 Dec;28(12):2611–2621. doi: 10.1038/s41591-022-02060-2
  • Gruell H, Gunst JD, Cohen YZ, et al. Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial. Lancet Microbe. 2022 Mar;3(3):e203–e214. doi: 10.1016/S2666-5247(21)00239-1
  • Gay CL, James KS, Tuyishime M, et al. Stable latent HIV infection and low-level viremia despite treatment with the broadly neutralizing antibody VRC07-523LS and the latency reversal agent vorinostat. J Infect Dis. 2022 Mar 2;225(5):856–861. doi: 10.1093/infdis/jiab487
  • Kwon KJ, Timmons AE, Sengupta S, et al. Different human resting memory CD4(+) T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med. 2020 Jan 29;12(528). doi: 10.1126/scitranslmed.aax6795
  • Siliciano JD, Siliciano RF. Low inducibility of latent human immunodeficiency virus type 1 proviruses as a major barrier to cure. J Infect Dis. 2021 Feb 15;223(12 Suppl 2):13–21. doi: 10.1093/infdis/jiaa649
  • Julg B, Barouch D. Broadly neutralizing antibodies for HIV-1 prevention and therapy. Semin Immunol. 2021 Jan;51:101475. doi: 10.1016/j.smim.2021.101475
  • Spencer DA, Shapiro MB, Haigwood NL, et al. Advancing HIV broadly neutralizing antibodies: from discovery to the clinic. Front Public Health. 2021;9:690017. doi: 10.3389/fpubh.2021.690017
  • Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science. 2016 May 20;352(6288):1001–1004. doi: 10.1126/science.aaf1279
  • Bournazos S, Ravetch JV. Anti-retroviral antibody FcγR-mediated effector functions. Immunol Rev. 2017 Jan;275(1):285–295. doi: 10.1111/imr.12482
  • Kwong PD, Mascola JR. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity. 2012 Sep 21;37(3):412–425. doi: 10.1016/j.immuni.2012.08.012
  • Caskey M, Schoofs T, Gruell H, et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med. 2017 Feb;23(2):185–191. doi: 10.1038/nm.4268
  • Schoofs T, Klein F, Braunschweig M, et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science. 2016 May 20;352(6288):997–1001. doi: 10.1126/science.aaf0972
  • Caskey M, Klein F, Lorenzi JC, et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature. 2015 Apr 8;522(7557):487–491. doi: 10.1038/nature14411
  • Lynch RM, Boritz E, Coates EE, et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med. 2015 Dec 23;7(319):319ra206. doi: 10.1126/scitranslmed.aad5752
  • Bar-On Y, Gruell H, Schoofs T, et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med. 2018 Sep 26;24(11):1701–1707. doi: 10.1038/s41591-018-0186-4
  • Stephenson KE, Julg B, Tan CS, et al. Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nat Med. 2021 Oct;27(10):1718–1724. doi: 10.1038/s41591-021-01509-0
  • Crowell TA, Colby DJ, Pinyakorn S, et al. Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV. 2019 May;6(5):e297–e306. doi: 10.1016/S2352-3018(19)30053-0
  • Bar KJ, Sneller MC, Harrison LJ, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N Engl J Med. 2016 Nov 24;375(21):2037–2050. doi: 10.1056/NEJMoa1608243
  • Julg B, Stephenson KE, Wagh K, et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat Med. 2022 Jun;28(6):1288–1296. doi: 10.1038/s41591-022-01815-1
  • Mendoza P, Gruell H, Nogueira L, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018 Sep;561(7724):479–484. doi: 10.1038/s41586-018-0531-2
  • Nishimura Y, Gautam R, Chun TW, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017 Mar 13;543(7646):559–563. doi: 10.1038/nature21435
  • Niessl J, Baxter AE, Mendoza P, et al. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat Med. 2020 Feb;26(2):222–227. doi: 10.1038/s41591-019-0747-1
  • Gaebler C, Nogueira L, Stoffel E, et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature. 2022 Jun;606(7913):368–374. doi: 10.1038/s41586-022-04597-1
  • Sneller MC, Blazkova J, Justement JS, et al. Combination anti-HIV antibodies provide sustained virological suppression. Nature. 2022 Jun;606(7913):375–381. doi: 10.1038/s41586-022-04797-9
  • Casazza JP, Cale EM, Narpala S, et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nat Med. 2022 May;28(5):1022–1030. doi: 10.1038/s41591-022-01762-x
  • Abrahams MR, Joseph SB, Garrett N, et al. The replication-competent HIV-1 latent reservoir is primarily established near the time of therapy initiation. Sci Transl Med. 2019 Oct 9;11(513). doi: 10.1126/scitranslmed.aaw5589
  • Brodin J, Zanini F, Thebo L, et al. Establishment and stability of the latent HIV-1 DNA reservoir. Elife. [2016 Nov 15];5. doi: 10.7554/eLife.18889
  • Petravic J, Martyushev A, Reece JC, et al. Modeling the timing of antilatency drug administration during HIV treatment. J Virol. 2014 Dec;88(24):14050–14056. doi: 10.1128/JVI.01701-14
  • Reece JC, Martyushev A, Petravic J, et al. Measuring turnover of SIV DNA in resting CD4+ T cells using pyrosequencing: implications for the timing of HIV eradication therapies. PLoS One. 2014;9(4):e93330. doi: 10.1371/journal.pone.0093330
  • Gunst JD, Pahus MH, Rosás-Umbert M, et al. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat Med. 2022 Nov;28(11):2424–2435. doi: 10.1038/s41591-022-02023-7
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018 Feb;18(2):91–104. doi: 10.1038/nri.2017.112
  • Banga R, Procopio FA, Noto A, et al. PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat Med. 2016 Jul;22(7):754–761. doi: 10.1038/nm.4113
  • Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009 Aug;15(8):893–900. doi: 10.1038/nm.1972
  • Hatano H, Jain V, Hunt PW, et al. Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J Infect Dis. 2013 Jul;208(1):50–56. doi: 10.1093/infdis/jis630
  • Evans VA, van der Sluis RM, Solomon A, et al. Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. AIDS. 2018 Jul 17;32(11):1491–1497. doi: 10.1097/QAD.0000000000001849
  • Olesen R, Leth S, Nymann R, et al. Immune checkpoints and the HIV-1 reservoir: proceed with caution. J Virus Erad. 2016 Jul 1;2(3):183–186. doi: 10.1016/S2055-6640(20)30463-5
  • Wightman F, Solomon A, Kumar SS, et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS. 2015 Feb 20;29(4):504–506. doi: 10.1097/QAD.0000000000000562
  • Guihot A, Marcelin AG, Massiani MA, et al. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol. 2018 Feb 1;29(2):517–518. doi: 10.1093/annonc/mdx696
  • Le Garff G, Samri A, Lambert-Niclot S, et al. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS. 2017 Apr 24;31(7):1048–1051. doi: 10.1097/QAD.0000000000001429
  • Scully EP, Rutishauser RL, Simoneau CR, et al. Inconsistent HIV reservoir dynamics and immune responses following anti-PD-1 therapy in cancer patients with HIV infection. Ann Oncol. 2018 Oct 1;29(10):2141–2142. doi: 10.1093/annonc/mdy259
  • Rasmussen TA, Rajdev L, Rhodes A, et al. Impact of anti-PD-1 and anti-CTLA-4 on the human immunodeficiency virus (HIV) reservoir in people living with HIV with cancer on antiretroviral therapy: the AIDS malignancy Consortium 095 study. Clin Infect Dis. 1981 [2021 Oct 5];73(7):e1973–e. doi: 10.1093/cid/ciaa1530
  • Harper J, Gordon S, Chan CN, et al. CTLA-4 and PD-1 dual blockade induces SIV reactivation without control of rebound after antiretroviral therapy interruption. Nat Med. 2020;26(4):519–528. doi: 10.1038/s41591-020-0782-y
  • Uldrick TS, Adams SV, Fromentin R, et al. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med. 2022 Jan 26;14(629):eabl3836. doi: 10.1126/scitranslmed.abl3836
  • Chiu CYH, Chang JJ, Dantanarayana AI, et al., editors. Combination of immune checkpoint blockade increases IL-2 in HIV-Specific T cells. Conference on Retroviruses and Opportunistic Infections (CROI); 2021 Virtual
  • Gay CL, Bosch RJ, Ritz J, et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J Infect Dis. 2017 Jun 1;215(11):1725–1733. doi: 10.1093/infdis/jix191
  • Gay CL, Bosch RJ, McKhann A, et al. Suspected immune-related adverse events with an anti-PD-1 inhibitor in otherwise healthy people with HIV. J Acquir Immune Defic Syndr. 2021 Aug 15;87(5):e234–e236. doi: 10.1097/QAI.0000000000002716
  • Colston E, Grasela D, Gardiner D, et al. An open-label, multiple ascending dose study of the anti-CTLA-4 antibody ipilimumab in viremic HIV patients. PLoS One. 2018;13(6):e0198158. doi: 10.1371/journal.pone.0198158
  • Chiu CY, Schou MD, McMahon JH, et al. Soluble immune checkpoints as correlates for HIV persistence and T cell function in people with HIV on antiretroviral therapy. Front Immunol. 2023;14:1123342. doi: 10.3389/fimmu.2023.1123342
  • Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010 Aug 27;33(2):153–165. doi: 10.1016/j.immuni.2010.08.004
  • Chen D, Tang TX, Deng H, et al. Interleukin-7 biology and its effects on immune cells: mediator of generation, differentiation, survival, and homeostasis. Front Immunol. 2021;12:747324. doi: 10.3389/fimmu.2021.747324
  • Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006 Aug;6(8):595–601. doi: 10.1038/nri1901
  • Jones RB, Mueller S, O’Connor R, et al. A subset of latency-reversing agents expose HIV-Infected resting CD4+ T-Cells to recognition by cytotoxic T-Lymphocytes. PLOS Pathog. 2016 Apr;12(4):e1005545. doi: 10.1371/journal.ppat.1005545
  • Chun TW, Engel D, Mizell SB, et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med. 1999 Jun;5(6):651–655. doi: 10.1038/9498
  • Dybul M, Hidalgo B, Chun TW, et al. Pilot study of the effects of intermittent interleukin-2 on human immunodeficiency virus (HIV)-specific immune responses in patients treated during recently acquired HIV infection. J Infect Dis. 2002 Jan 1;185(1):61–68. doi: 10.1086/338123
  • Stellbrink HJ, van Lunzen J, Westby M, et al. Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial). AIDS. 2002 Jul 26;16(11):1479–1487. doi: 10.1097/00002030-200207260-00004
  • Abrams D, Lévy Y, Losso MH, et al. Interleukin-2 therapy in patients with HIV infection. N Engl J Med. 2009 Oct 15;361(16):1548–1559.
  • Pett SL, Kelleher AD, Emery S. Role of interleukin-2 in patients with HIV infection. Drugs. 2010 Jun 18;70(9):1115–1130. doi: 10.2165/10898620-000000000-00000
  • Levy Y, Lacabaratz C, Weiss L, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest. 2009 Apr;119(4):997–1007. doi: 10.1172/JCI38052
  • Sereti I, Dunham RM, Spritzler J, et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood. 2009 Jun 18;113(25):6304–6314. doi: 10.1182/blood-2008-10-186601
  • Imamichi H, Degray G, Asmuth DM, et al. HIV-1 viruses detected during episodic blips following interleukin-7 administration are similar to the viruses present before and after interleukin-7 therapy. AIDS. 2011 Jan 14;25(2):159–164. doi: 10.1097/QAD.0b013e328340a270
  • Mueller YM, Petrovas C, Bojczuk PM, et al. Interleukin-15 increases effector memory CD8+ t cells and NK cells in simian immunodeficiency virus-infected macaques. J Virol. 2005 Apr;79(8):4877–4885. doi: 10.1128/JVI.79.8.4877-4885.2005
  • Mueller YM, Do DH, Altork SR, et al. IL-15 treatment during acute simian immunodeficiency virus (SIV) infection increases viral set point and accelerates disease progression despite the induction of stronger SIV-specific CD8+ T cell responses. J Immunol. 2008 Jan 1;180(1):350–360. doi: 10.4049/jimmunol.180.1.350
  • Lugli E, Mueller YM, Lewis MG, et al. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques. Blood. 2011 Sep 1;118(9):2520–2529. doi: 10.1182/blood-2011-05-351155
  • Ellis-Connell AL, Balgeman AJ, Zarbock KR, et al. ALT-803 transiently reduces simian immunodeficiency virus replication in the absence of antiretroviral treatment. J Virol. 2018 Feb 1;92(3). doi: 10.1128/JVI.01748-17
  • McBrien JB, Wong AKH, White E, et al. Combination of CD8β depletion and Interleukin-15 superagonist N-803 induces virus reactivation in simian-human immunodeficiency virus-infected, long-term ART-Treated rhesus macaques. J Virol. 2020 Sep 15;94(19). doi: 10.1128/JVI.00755-20
  • Harwood O, O’Connor S. Therapeutic potential of IL-15 and N-803 in HIV/SIV infection. Viruses. 2021 Sep 2;13(9):1750. doi: 10.3390/v13091750
  • Miller JS, Davis ZB, Helgeson E, et al. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med. 2022 Feb;28(2):392–400. doi: 10.1038/s41591-021-01651-9
  • Sugawara S, Thomas DL, Balagopal A. HIV-1 infection and type 1 interferon: navigating through uncertain waters. AIDS Res Hum Retroviruses. 2019 Jan;35(1):25–32. doi: 10.1089/aid.2018.0161
  • Zhao X, Zhao Y, Du J, et al. The Interplay among HIV, LINE-1, and the interferon signaling system. Front Immunol. 2021;12:732775. doi: 10.3389/fimmu.2021.732775
  • Asmuth DM, Murphy RL, Rosenkranz SL, et al. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis. 2010 Jun 1;201(11):1686–1696. doi: 10.1086/652420
  • Azzoni L, Foulkes AS, Papasavvas E, et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 2013 Jan 15;207(2):213–222. doi: 10.1093/infdis/jis663
  • Lane HC, Kovacs JA, Feinberg J, et al. Anti-retroviral effects of interferon-alpha in AIDS-associated Kaposi’s sarcoma. Lancet. 1988 Nov 26;2(8622):1218–1222. doi: 10.1016/S0140-6736(88)90811-2
  • Manion M, Rodriguez B, Medvik K, et al. Interferon-alpha administration enhances CD8+ T cell activation in HIV infection. PLoS One. 2012;7(1):e30306. doi: 10.1371/journal.pone.0030306
  • Papasavvas E, Azzoni L, Kossenkov AV, et al. NK response correlates with HIV decrease in Pegylated IFN-α2a-treated antiretroviral therapy-suppressed subjects. J Immunol. 2019 Aug 1;203(3):705–717. doi: 10.4049/jimmunol.1801511
  • Abdel-Mohsen M, Deng X, Liegler T, et al. Effects of alpha interferon treatment on intrinsic anti-HIV-1 immunity in vivo. J Virol. 2014 Jan;88(1):763–767. doi: 10.1128/JVI.02687-13
  • Pillai SK, Abdel-Mohsen M, Guatelli J, et al. Role of retroviral restriction factors in the interferon-α-mediated suppression of HIV-1 in vivo. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3035–3040. doi: 10.1073/pnas.1111573109
  • Papasavvas E, Azzoni L, Pagliuzza A, et al. Safety, immune, and antiviral effects of Pegylated interferon alpha 2b administration in antiretroviral therapy-suppressed individuals: results of pilot clinical trial. AIDS Res Hum Retroviruses. 2021 Jun;37(6):433–443. doi: 10.1089/aid.2020.0243
  • Gara N, Ghany MG. What the infectious disease physician needs to know about pegylated interferon and ribavirin. Clin Infect Dis. 2013 Jun;56(11):1629–1636. doi: 10.1093/cid/cit074
  • Martinsen JT, Gunst JD, Højen JF, et al. The use of Toll-like receptor agonists in HIV-1 cure strategies. Front Immunol. 2020;11:1112. doi: 10.3389/fimmu.2020.01112
  • Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007 May;117(5):1184–1194. doi: 10.1172/JCI31414
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010 May;11(5):373–384. doi: 10.1038/ni.1863
  • Scheller C, Ullrich A, McPherson K, et al. CpG oligodeoxynucleotides activate HIV replication in latently infected human T cells. J Biol Chem. 2004 May 21;279(21):21897–21902. doi: 10.1074/jbc.M311609200
  • Scheller C, Ullrich A, Lamla S, et al. Dual activity of phosphorothioate CpG oligodeoxynucleotides on HIV: reactivation of latent provirus and inhibition of productive infection in human T cells. Ann N Y Acad Sci. 2006 Dec;1091(1):540–547. doi: 10.1196/annals.1378.095
  • Tsai A, Irrinki A, Kaur J, et al. Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-Specific immunity in cells from HIV-Infected individuals on suppressive antiretroviral therapy. J Virol. 2017 Apr 15;91(8). doi: 10.1128/JVI.02166-16
  • Macedo AB, Novis CL, De Assis CM, et al. Dual TLR2 and TLR7 agonists as HIV latency-reversing agents. JCI Insight. 2018 Oct 4;3(19). doi: 10.1172/jci.insight.122673
  • Offersen R, Nissen SK, Rasmussen TA, et al. A novel Toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription and NK cell-mediated inhibition of HIV-1-Infected Autologous CD4+ T cells. J Virol. 2016 May;90(9):4441–4453. doi: 10.1128/JVI.00222-16
  • Lim SY, Osuna CE, Hraber PT, et al. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci Transl Med. 2018 May 2;10(439). doi: 10.1126/scitranslmed.aao4521
  • Del Prete GQ, Alvord WG, Li Y, et al. TLR7 agonist administration to SIV-infected macaques receiving early initiated cART does not induce plasma viremia. JCI Insight. 2019 Jun 6;4(11). doi: 10.1172/jci.insight.127717
  • Riddler SA, Para M, Benson CA, et al. Vesatolimod, a Toll-like receptor 7 agonist, induces immune activation in virally suppressed adults living with human immunodeficiency virus-1. Clin Infect Dis. 2021 Jun 1;72(11):e815–e824. doi: 10.1093/cid/ciaa1534
  • SenGupta D, Brinson C, DeJesus E, et al. The TLR7 agonist vesatolimod induced a modest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy. Sci Transl Med. 2021 Jun 23;13(599). doi: 10.1126/scitranslmed.abg3071
  • Vibholm L, Schleimann MH, Hojen JF, et al. Short-course Toll-like receptor 9 agonist treatment impacts innate immunity and plasma viremia in individuals with human immunodeficiency virus infection. Clin Infect Dis. 2017 Jun 15;64(12):1686–1695. doi: 10.1093/cid/cix201
  • Krarup AR, Abdel-Mohsen M, Schleimann MH, et al. The TLR9 agonist MGN1703 triggers a potent type I interferon response in the sigmoid colon. Mucosal Immunol. 2018 Mar;11(2):449–461. doi: 10.1038/mi.2017.59
  • Schleimann MH, Kobberø ML, Vibholm LK, et al. TLR9 agonist MGN1703 enhances B cell differentiation and function in lymph nodes. EBioMedicine. 2019 Jul;45:328–340.
  • Vibholm LK, Konrad CV, Schleimann MH, et al. Effects of 24-week Toll-like receptor 9 agonist treatment in HIV type 1+ individuals. AIDS. 2019 Jul 1;33(8):1315–1325. doi: 10.1097/QAD.0000000000002213
  • Borducchi EN, Liu J, Nkolola JP, et al. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature. 2018 Nov;563(7731):360–364. doi: 10.1038/s41586-018-0600-6
  • Walker-Sperling VEK, Mercado NB, Chandrashekar A, et al. Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nat Commun. 2022 Jun 16;13(1):3463. doi: 10.1038/s41467-022-31196-5
  • Hsu DC, Schuetz A, Imerbsin R, et al. TLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruption. PLOS Pathog. 2021 Feb;17(2):e1009339. doi: 10.1371/journal.ppat.1009339
  • Gunst JD, Højen JF, Pahus MH, et al. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med. 2023 Sep 11;29(10):2547–2558. doi: 10.1038/s41591-023-02547-6
  • Buzon MJ, Yang Y, Ouyang Z, et al. Susceptibility to CD8 T-cell-mediated killing influences the reservoir of latently HIV-1-infected CD4 T cells. J Acquired Immune Deficiency Syndromes. 1999 [2014 Jan 1];65(1):1–9. doi: 10.1097/QAI.0b013e3182a1bc81
  • Veenhuis RT, Kwaa AK, Garliss CC, et al. Long-term remission despite clonal expansion of replication-competent HIV-1 isolates. JCI Insight. 2018 Sep 20;3(18). doi: 10.1172/jci.insight.122795
  • Chandrasekar AP, Cummins NW, Badley AD. The role of the BCL-2 family of proteins in HIV-1 pathogenesis and persistence. Clin Microbiol Rev. [2019 Dec 18];33(1). doi: 10.1128/CMR.00107-19
  • Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988 Sep 29;335(6189):440–442. doi: 10.1038/335440a0
  • Ren Y, Huang SH, Patel S, et al. BCL-2 antagonism sensitizes cytotoxic T cell-resistant HIV reservoirs to elimination ex vivo. J Clin Invest. 2020 May 1;130(5):2542–2559. doi: 10.1172/JCI132374
  • Cummins NW, Sainski AM, Dai H, et al. Prime, shock, and kill: priming CD4 T cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces HIV reservoir size. J Virol. 2016 Apr;90(8):4032–4048. doi: 10.1128/JVI.03179-15
  • Chandrasekar AP, Cummins NW, Natesampillai S, et al. The BCL-2 inhibitor venetoclax augments immune effector function mediated by fas ligand, TRAIL, and Perforin/Granzyme B, resulting in reduced plasma viremia and Decreased HIV reservoir size during acute HIV infection in a humanized mouse model. J Virol. 2022 Dec 21;96(24):e0173022. doi: 10.1128/jvi.01730-22
  • Gandolfi S, Laubach JP, Hideshima T, et al. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017 Dec;36(4):561–584. doi: 10.1007/s10555-017-9707-8
  • Bültmann A, Eberle J, Haas J. Ubiquitination of the human immunodeficiency virus type 1 env glycoprotein. J Virol. 2000 Jun;74(11):5373–5376. doi: 10.1128/JVI.74.11.5373-5376.2000
  • Timmons A, Fray E, Kumar M, et al. HSF1 inhibition attenuates HIV-1 latency reversal mediated by several candidate LRAs in vitro and ex vivo. Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15763–15771. doi: 10.1073/pnas.1916290117
  • Pan XY, Zhao W, Wang CY, et al. Heat shock protein 90 facilitates latent HIV reactivation through maintaining the function of positive transcriptional elongation factor b (p-TEFb) under proteasome inhibition. J Biol Chem. 2016 Dec 9;291(50):26177–26187. doi: 10.1074/jbc.M116.743906
  • Li Z, Wu J, Chavez L, et al. Reiterative enrichment and authentication of CRISPRi targets (REACT) identifies the proteasome as a key contributor to HIV-1 latency. PLOS Pathog. 2019 Jan;15(1):e1007498. doi: 10.1371/journal.ppat.1007498
  • Cummins NW, Baker J, Chakraborty R, et al. Single center, open label dose escalating trial evaluating once weekly oral ixazomib in ART-suppressed, HIV positive adults and effects on HIV reservoir size in vivo. EClinicalMedicine. 2021 Dec;42:101225.
  • Kuhn DJ, Orlowski RZ, Bjorklund CC. Second generation proteasome inhibitors: carfilzomib and immunoproteasome-specific inhibitors (IPSIs). Curr Cancer Drug Targets. 2011 Mar;11(3):285–295. doi: 10.2174/156800911794519725
  • Arastu-Kapur S, Anderl JL, Kraus M, et al. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res. 2011 May 1;17(9):2734–2743. doi: 10.1158/1078-0432.CCR-10-1950
  • Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014 Jun 12;510(7504):235–240. doi: 10.1038/nature13420
  • Hussein M, Molina MA, Berkhout B, et al. A CRISPR-Cas cure for HIV/AIDS. Int J Mol Sci. 2023 Jan 13;24(2):1563. doi: 10.3390/ijms24021563
  • Ophinni Y, Inoue M, Kotaki T, et al. CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Sci Rep. 2018 May 17;8(1):7784. doi: 10.1038/s41598-018-26190-1
  • Hultquist JF, Schumann K, Woo JM, et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-Host interactions in primary human T cells. Cell Rep. 2016 Oct 25;17(5):1438–1452. doi: 10.1016/j.celrep.2016.09.080
  • Heeren JJ F-V. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X. 2021 Mar;3(1):100049. doi: 10.1016/j.cytox.2020.100049
  • Burdo TH, Chen C, Kaminski R, et al. Preclinical safety and biodistribution of CRISPR targeting SIV in non-human primates. Gene Ther. 2023 Aug 17. doi: 10.1038/s41434-023-00410-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.