978
Views
31
CrossRef citations to date
0
Altmetric
Review

High-throughput analysis of immunoglobulin G glycosylation

, &
Pages 523-534 | Received 21 Feb 2016, Accepted 01 Apr 2016, Published online: 22 Apr 2016

References

  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006;126:855–867.
  • Hart GW, Housley MP, Slawson C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–1022.
  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–462.
  • Raju TS, Scallon BJ. Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun. 2006;341:797–803.
  • Russell D, Oldham NJ, Davis BG. Site-selective chemical protein glycosylation protects from autolysis and proteolytic degradation. Carbohydr Res. 2009;344:1508–1514.
  • Ishino T, Wang M, Mosyak L, et al. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem. 2013;288:16529–16537.
  • Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta - Gen Subj. 2012;1820:1306–1317.
  • Hennet T, Cabalzar J. Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci. 2015;40:377–384.
  • Scott K, Gadomski T, Kozicz T, et al. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014;37:609–617.
  • Goulabchand R, Vincent T, Batteux F, et al. Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun Rev. 2014;13:742–750.
  • Vučkovïć F, Krištïć J, Gudelj I, et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 2015;67:2978–2989.
  • Gornik O, Lauc G. Glycosylation of serum proteins in inflammatory diseases. Dis Markers. 2008;25:267–278.
  • Trbojević Akmačić I, Ventham NT, Theodoratou E, et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis. 2015;21:1237–1247.
  • Häuselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 2014;4:28.
  • Vuckovic F, Theodoratou E, Thaci K, et al. IgG glycome in colorectal cancer. Clin Cancer Res. 2016 Feb 1. DOI:10.1158/1078-0432.CCR-15-1867.
  • Anumula KR. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc. J Immunol Methods. 2012;382:167–176.
  • Arnold JN, Wormald MR, Sim RB, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.
  • Lu J, Chu J, Zou Z, et al. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. Proc Natl Acad Sci. 2015;112:833–838.
  • Subedi GP, Barb AW. The structural role of antibody N-glycosylation in receptor interactions. Structure. 2015;23:1573–1583.
  • Böhm S, Schwab I, Lux A, et al. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol. 2012;34:443–453.
  • Pucic M, Knezevic A, Vidic J, et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics. 2011;10:M111.010090–M111.010090.
  • Pučić M, Mužinić A, Novokmet M, et al. Changes in plasma and IgG N-glycome during childhood and adolescence. Glycobiology. 2012;22:975–982.
  • Krištić J, Vučković F, Menni C, et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol Ser Biol Sci Med Sci. 2014;69:779–789.
  • Baković M, Selman MHJ, Ho M, et al. High-throughput IgG Fc N - glycosylation pro fi ling by mass spectrometry of glycopeptides. J Proteome Res. 2013;12:821–831.
  • Ferrara C, Grau S, Jäger C, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A. 2011;108:12669–12674.
  • Masuda K, Kubota T, Kaneko E, et al. Enhanced binding affinity for FcγRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol. 2007;44:3122–3131.
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–673.
  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13:176–189.
  • Yu X, Vasiljevic S, Mitchell DA, et al Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol. 2013;425:1253–1258.
  • Ogata S, Shimizu C, Franco A, et al. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One. 2013;8:e81448.
  • Kutalik Z, Benyamin B, Bergmann S, et al. Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum Mol Genet. 2011;20:3710–3717.
  • Huffman JE, Knežević A, Vitart V, et al. Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum Mol Genet. 2011;20:5000–5011.
  • Lauc G, Huffman JE, Pučić M, et al. Loci associated with N-glycosylation of human immunoglobulin G Show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9(1):e1003225.
  • Gilgunn S, Conroy PJ, Saldova R, et al. Aberrant PSA glycosylation–a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107.
  • Huffman JE, Pučić-Baković M, Klarić L, et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics. 2014;13:1598–1610.
  • Morelle W, Michalski J-C. Analysis of protein glycosylation by mass spectrometry. Nat Protoc. 2007;2:1585–1602.
  • Desantos-Garcia JL, Khalil SI, Hussein A, et al. Enhanced sensitivity of LC-MS analysis of permethylated N-glycans through online purification. Electrophoresis. 2011;32:3516–3525.
  • Bones J, Mittermayr S, Donoghue NO, et al. Profiling of serum N -glycans for fast and efficient glycosylation. Anal Chem. 2010;82:10208–10215.
  • Huhn C, Selman MHJ, Ruhaak LR, et al. IgG glycosylation analysis. Proteomics. 2009;9:882–913.
  • Geyer H, Geyer R. Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta - Proteins Proteomics. 2006;1764:1853–1869.
  • Triguero A, Cabrera G, Royle L, et al. Chemical and enzymatic N-glycan release comparison for N-glycan profiling of monoclonal antibodies expressed in plants. Anal Biochem. 2010;400:173–183.
  • Yamamoto K. Microbial endoglycosidases for analyses of oligosaccharide chains. J Biochem. 1994;116:229–235.
  • Go EP, Hewawasam G, Liao H-X, et al. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J Virol. 2011;85:8270–8284.
  • Goodfellow JJ, Baruah K, Yamamoto K, et al. An endoglycosidase with alternative glycan specificity allows broadened glycoprotein remodelling. J Am Chem Soc. 2012;134:8030–8033.
  • Jmeian Y, Hammad LA, Mechref Y. Fast and efficient online release of N-glycans from glycoproteins facilitating liquid chromatography–tandem mass spectrometry glycomic profiling. Anal Chem. 2012;84:8790–8796.
  • Krenkova J, Szekrenyes A, Keresztessy Z, et al. Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. J Chromatogr A. 2013;1322:54–61.
  • Zhou H, Briscoe AC, Froehlich JW, et al. PNGase F catalyzes de-N-glycosylation in a domestic microwave. Anal Biochem. 2012;427:33–35.
  • Szabo Z, Guttman A, Karger BL. Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem. 2010;82:2588–2593.
  • Yoshimura T, Yamada G, Narumi M, et al. Detection of N-glycans on small amounts of glycoproteins in tissue samples and sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 2012;423:253–260.
  • Royle L, Campbell MP, Radcliffe CM, et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem. 2008;376:1–12.
  • Cook KS, Bullock K, Sullivan T. Development and qualification of an antibody rapid deglycosylation method. Biologicals. 2012;40:109–117.
  • Anumula KR, Dhume ST. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 1998;8:685–694.
  • Ruhaak LR, Huhn C, Waterreus W-J, et al. Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins. Anal Chem. 2008;80:6119–6126.
  • Deguchi K, Keira T, Yamada K, et al. Two-dimensional hydrophilic interaction chromatography coupling anion-exchange and hydrophilic interaction columns for separation of 2-pyridylamino derivatives of neutral and sialylated N-glycans. J Chromatogr A. 2008;1189:169–174.
  • Harvey DJ. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 2000;11:900–915.
  • Sato K, Sato K, Okubo A, et al. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis. Anal Sci. 2005;21:21–24.
  • Kamoda S, Ishikawa R, Kakehi K. Capillary electrophoresis with laser-induced fluorescence detection for detailed studies on N-linked oligosaccharide profile of therapeutic recombinant monoclonal antibodies. J Chromatogr A. 2006;1133:332–339.
  • Gil G-C, Iliff B, Cerny R, et al. High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal Chem. 2010;82:6613–6620.
  • Balog CIA, Stavenhagen K, Fung WLJ, et al. N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol Cell Proteomics. 2012;11:571–585.
  • Prien JM, Prater BD, Qin Q, et al. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal Chem. 2010;82:1498–1508.
  • Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350:1–23.
  • Higel F, Demelbauer U, Seidl A, et al. Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem. 2013;405:2481–2493.
  • Klapoetke S, Zhang J, Becht S, et al. The evaluation of a novel approach for the profiling and identification of N-linked glycan with a procainamide tag by HPLC with fluorescent and mass spectrometric detection. J Pharm Biomed Anal. 2010;53:315–324.
  • Kozak RP, Tortosa CB, Fernandes DL, et al. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization–mass spectrometry. Anal Biochem. 2015;486:38–40.
  • Stöckmann H, Duke RM, Millán Martín S, et al. Ultrahigh throughput, ultrafiltration-based N -glycomics platform for ultraperformance liquid chromatography (ULTRA3). Anal Chem. 2015;87:8316–8322.
  • Lauber MA, Yu Y-Q, Brousmiche DW, et al. Rapid preparation of released N-glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 2015;87:5401–5409.
  • Bosch L, Alegría A, Farré R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. J Chromatogr B Anal Technol Biomed Life Sci. 2006;831:176–183.
  • Ullmer R, Plematl A, Rizzi A. Derivatization by 6-aminoquinolyl- N-hydroxysuccinimidyl carbamate for enhancing the ionization yield of small peptides and glycopeptides in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:1469–1479.
  • Trbojević Akmačić I, Ugrina I, Štambuk J, et al. High throughput glycomics: optimization of sample preparation. Biochem. 2015;80:934–942.
  • Nakagawa H, Hato M, Takegawa Y, et al. Detection of altered N-glycan profiles in whole serum from rheumatoid arthritis patients. J Chromatogr B Anal Technol Biomed Life Sci. 2007;853:133–137.
  • Royle L, Radcliffe CM, Dwek RA, et al Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol Biol. 2006;347:125–143.
  • Kalay H, Ambrosini M, Van Berkel PHC, et al. Online nanoliquid chromatography-mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis. Anal Biochem. 2012;423:153–162.
  • Pabst M, Kolarich D, Pöltl G, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem. 2009;384:263–273.
  • Yu YQ, Gilar M, Kaska J, et al. A rapid sample preparation method for mass spectrometric characterization of N-linked glycans. Rapid Commun Mass Spectrom. 2005;19:2331–2336.
  • Burnina I, Hoyt E, Lynaugh H, et al. A cost-effective plate-based sample preparation for antibody N-glycan analysis. J Chromatogr A. 2013;1307:201–206.
  • Prater BD, Anumula KR, Hutchins JT. Automated sample preparation facilitated by PhyNexus MEA purification system for oligosaccharide mapping of glycoproteins. Anal Biochem. 2007;369:202–209.
  • Stöckmann H, Adamczyk B, Hayes J, et al. Automated, high-throughput IgG-antibody glycoprofiling platform. Anal Chem. 2013;85:8841–8849.
  • Ahn J, Bones J, Yu YQ, et al. Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7μm sorbent. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:403–408.
  • Gilar M, Neue UD. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. J Chromatogr A. 2007;1169:139–150.
  • Campbell MP, Royle L, Radcliffe CM, et al. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics. 2008;24:1214–1216.
  • Bondt A, Rombouts Y, Selman MHJ, et al. IgG Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics. 2014;31:1–30.
  • Rombouts Y, Willemze A, Van Beers JJBC, et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann Rheum Dis. 2015;75:578–585.
  • Mahan AE, Tedesco J, Dionne K, et al. A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis. J Immunol Methods. 2015;417:34–44.
  • Bunz S-C, Rapp E, Neusüss C. Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser- induced fluorescence systems. Anal Chem. 2013;85:10218–10224.
  • Szigeti M, Lew C, Roby K, et al. Fully automated sample preparation for ultrafast N-glycosylation analysis of antibody therapeutics. J Lab Autom. 2016;21:281–286.
  • Szabo Z, Guttman A, Rejtar T, et al. Improved sample preparation method for glycan analysis of glycoproteins by CE-LIF and CE-MS. Electrophoresis. 2010;31:1389–1395.
  • Ruhaak LR, Steenvoorden E, Koeleman CAM, et al. 2-Picoline-borane: A non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics. 2010;10:2330–2336.
  • Bunz S-C, Cutillo F, Neusüß C. Analysis of native and APTS-labeled N-glycans by capillary electrophoresis/time-of-flight mass spectrometry. Anal Bioanal Chem. 2013;405:8277–8284.
  • Váradi C, Lew C, Guttman A. Rapid magnetic bead based sample preparation for automated and high throughput N-glycan analysis of therapeutic antibodies. Anal Chem. 2014;86:5682–5687.
  • Ruhaak LR, Hennig R, Huhn C, et al. Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J Proteome Res. 2010;9:6655–6664.
  • Mittermayr S, Guttman A. Influence of molecular configuration and conformation on the electromigration of oligosaccharides in narrow bore capillaries. Electrophoresis. 2012;33:1000–1007.
  • Jarvas G, Szigeti M, Guttman A. GUcal: An integrated application for capillary electrophoresis based glycan analysis. Electrophoresis. 2015;36:3094–3096.
  • Mittermayr S, Bones J, Doherty M, et al. Multiplexed analytical glycomics: rapid and confident IgG N-glycan structural elucidation. J Proteome Res. 2011;10:3820–3829.
  • Mittermayr S, Bones J. Unraveling the glyco-puzzle: glycan structure identification by capillary electrophoresis. Anal Chem. 2013;85:4228–4238.
  • Maxwell EJ, Ratnayake C, Jayo R, et al. A promising capillary electrophoresis-electrospray ionization-mass spectrometry method for carbohydrate analysis. Electrophoresis. 2011;32:2161–2166.
  • Jayo RG, Thaysen-Andersen M, Lindenburg PW, et al. Simple capillary electrophoresis-mass spectrometry method for complex glycan analysis using a flow-through microvial interface. Anal Chem. 2014;86:6479–6486.
  • Vaezzadeh AR, Deshusses JMP, Waridel P, et al. Accelerated digestion for high-throughput proteomics analysis of whole bacterial proteomes. J Microbiol Methods. 2010;80:56–62.
  • Komatsu E, Buist M, Roy R, et al. Characterization of immunoglobulins through analysis of N-glycopeptides by MALDI-TOF MS. Methods. 2016 Jan 7. DOI:10.1016/j.ymeth.2016.01.005
  • Zhu J, Wang F, Chen R, et al. Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis. Anal Chem. 2012;84:5146–5153.
  • Reddy PM, Hsu W-Y, Hu J-F, et al. Digestion completeness of microwave-assisted and conventional trypsin-catalyzed reactions. J Am Soc Mass Spectrom. 2010;21:421–424.
  • An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol. 2009;13:421–426.
  • Stavenhagen K, Plomp R, Wuhrer M. Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal Chem. 2015;87:11691–11699.
  • Zhu Z, Desaire H. Carbohydrates on proteins: site-specific glycosylation analysis by mass spectrometry. Annu Rev Anal Chem. 2015;8:463–483.
  • Kolarich D, Jensen PH, Altmann F, et al. Determination of site-specific glycan heterogeneity on glycoproteins. Nat Protoc. 2012;7:1285–1298.
  • Selman MHJ, Hemayatkar M, Deelder AM, et al. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem. 2011;83:2492–2499.
  • Reiding KR, Blank D, Kuijper DM, et al. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem. 2014;86:5784–5793.
  • Zhang Y, Yu M, Zhang C, et al. Highly selective and ultra fast solid-phase extraction of N - glycoproteome by oxime click chemistry using aminooxy- functionalized magnetic nanoparticles. Anal Chem. 2014;86:7920–7924.
  • Zhang Y, Yu M, Zhang C, et al. Highly specific enrichment of N-glycoproteome through a nonreductive amination reaction using Fe3O4@SiO2-aniline nanoparticles. Chem Commun (Cambridge, United Kingdom). 2015;51:5982–5985.
  • Zhang L, Jiang H, Yao J, et al. Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers. Chem Commun. 2014;50:1027–1029.
  • Jensen PH, Mysling S, Højrup P, et al. Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). Methods Mol Biol. 2013;951:131–144.
  • Pasing Y, Sickmann A, Lewandrowski U. N-glycoproteomics: mass spectrometry-based glycosylation site annotation. Biol Chem. 2012;393:249–258.
  • Zhang Y, Jiao J, Yang P, et al. Mass spectrometry-based N-glycoproteomics for cancer biomarker discovery. Clin Proteomics. 2014;11:1–14.
  • Stadlmann J, Pabst M, Kolarich D, et al. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics. 2008;8:2858–2871.
  • Reusch D, Haberger M, Maier B, et al. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles–part 1: separation-based methods. MAbs. 2015;7:732–742.
  • Jensen PH, Karlsson NG, Kolarich D, et al. Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc. 2012;7:1299–1310.
  • Shubhakar A, Reiding KR, Gardner RA, et al. High-throughput analysis and automation for glycomics studies. Chromatographia. 2015;78:321–333.
  • Liu X, Qiu H, Kuo Lee R, et al. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both α2,3- and α2,6-linked sialic acids. Anal Chem. 2010;82:8300–8306.
  • Miura Y, Shinohara Y, Furukawa JI, et al. Rapid and simple solid-phase esterification of sialic acid residues for quantitative glycomics by mass spectrometry. Chem - A Eur J. 2007;13:4797–4804.
  • Anthony RM, Nimmerjahn F, Ashline DJ, et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320:373–376.
  • Bladergroen MR, Reiding KR, Hipgrave Ederveen AL, et al. Automation of high-throughput mass spectrometry-based plasma N -glycome analysis with linkage-specific sialic acid esterification. J Proteome Res. 2015;14:4080–4086.
  • De Haan N, Reiding KR, Haberger M, et al. Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem. 2015;87:8284–8291.
  • Nishikaze T, Nakamura T, Jinmei H, et al. Negative-ion MALDI-MS2 for discrimination of α2,3- and α2,6-sialylation on glycopeptides labeled with a pyrene derivative. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:1419–1428.
  • Nishikaze T, Kawabata S-I, Tanaka K. In-depth structural characterization of N -linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry. Anal Chem. 2014;86:5360–5369.
  • Hong Q, Lebrilla CB, Miyamoto S, et al. Absolute quantitation of immunoglobulin G and its glycoforms using multiple reaction monitoring. Anal Chem. 2013;85:8585–8593.
  • Hong Q, Ruhaak LR, Totten SM, et al. Label free absolute quantitation of oligosaccharides using multiple reaction monitoring. Anal Chem. 2014;86:2640−2647.
  • Ruhaak LR, Lebrilla CB. Applications of multiple reaction monitoring to clinical glycomics. Chromatographia. 2015;78:335–342.
  • Hong Q, Ruhaak LR, Stroble C, et al. A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J Proteome Res. 2015;14:5179–5192.
  • Ruhaak LR, Kim K, Stroble C, et al. Protein-specific differential glycosylation of immunoglobulins in serum of ovarian cancer patients. J Proteome Res. 2016;15:1002–1010.
  • Song E, Pyreddy S, Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2012;26:1941–1954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.