206
Views
1
CrossRef citations to date
0
Altmetric
Review

Boolean modeling techniques for protein co-expression networks in systems medicine

, , &
Pages 555-569 | Received 01 Feb 2016, Accepted 18 Apr 2016, Published online: 06 May 2016

References

  • Fuzery AK, Levin J, Chan MM, et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10(1):13.
  • Schuppert A. Mathematics in health care - “nice to have” or key for future success? EMS Newslett. 2012 Mar;(83):29–35.
  • Regierer B, Zazzu V, Sudbrak R, et al. Future of medicine: models in predictive diagnostics and personalized medicine. Adv Biochem Eng Biotechnol. 2013;133:15–33.
  • Ghosh S, Matsuoka Y, Asai Y, et al. Toward an integrated software platform for systems pharmacology. Biopharm Drug Dispos. 2013;34(9):508–526.
  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
  • Machado D, Costa RS, Rocha M, et al. Modeling formalisms in systems biology. AMB Express. 2011;1:45.
  • Palsson BO. Systems biology: constraint-based reconstruction and analysis. Cambridge: Cambridge University Press; 2015.
  • Materi W, Wishart DS. Computational systems biology in drug discovery and development: methods and applications. Drug Discov Today. 2007;12(7–8):295–303.
  • Vijesh N, Chakrabarti SK, Sreekumar J. Modeling of gene regulatory networks: a review. J Biomed Sci Eng. 2013;06(02):223–231.
  • Wynn ML, Consul N, Merajver SD, et al. Logic-based models in systems biology: a predictive and parameter-free network analysis method. Integr Biol Quant Biosci Nano Macro. 2012;4(11):1323–1337.
  • Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface R Soc. 2008;5(Suppl 1):S85–S94.
  • Trairatphisan P, Mizera A, Pang J, et al. Recent development and biomedical applications of probabilistic Boolean networks. Cell Commun Signaling CCS. 2013;11:46.
  • Liang J, Han J. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol. 2012;6:113.
  • Bornholdt S. Systems biology: less is more in modeling large genetic networks. Science. 2005;310(5747):449–451.
  • Gutenkunst RN, Waterfall JJ, Casey FP, et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007;3(10):1871–1878.
  • Vanlier J, Tiemann CA, Hilbers PA, et al. Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci. 2013;246(2):305–314.
  • Raue A, Schilling M, Bachmann J, et al. Lessons learned from quantitative dynamical modeling in systems biology. PLoS One. 2013;8(9):e74335.
  • Mussel C, Hopfensitz M, Kestler HA. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010;26(10):1378–1380.
  • Chaouiya C, Bérenguier D, Keating SM, et al. SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Syst Biol. 2013;7:135.
  • Janes KA, Lauffenburger DA. A biological approach to computational models of proteomic networks. Curr Opin Chem Biol. 2006;10(1):73–80.
  • Markowetz F, Spang R. Inferring cellular networks – a review. BMC Bioinformatics. 2007;8(Suppl 6):S5.
  • Bansal M, Belcastro V, Ambesi-Impiombato A, et al. How to infer gene networks from expression profiles. Mol Syst Biol. 2007;3:78.
  • Chai LE, Loh SK, Low ST, et al. A review on the computational approaches for gene regulatory network construction. Comput Biol Med. 2014;48:55–65.
  • Lecca P, Priami C. Biological network inference for drug discovery. Drug Discov Today. 2013;18(5–6):256–264.
  • Omony. Biological network inference: a review of methods and assessment of tools and techniques. Annu Res Rev Biol. 2014;4(4):577–601.
  • Albert R, Thakar J. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev Syst Biol Med. 2014;6(5):353–369.
  • De Smet R, Marchal K. Advantages and limitations of current network inference methods. Nat Rev Microbiol. 2010;8(10):717–729.
  • Hecker M, Lambeck S, Toepfer S, et al. Gene regulatory network inference: data integration in dynamic models-a review. Biosystems. 2009;96(1):86–103.
  • Lopez-Kleine L, Leal L, Lopez C. Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Funct Genomics. 2013;12(5):457–467.
  • Hickman GJ, Hodgman TC. Inference of gene regulatory networks using Boolean-network inference methods. J Bioinform Comput Biol. 2009;07(06):1013–1029.
  • Jang IS, Margolin A, Califano A. hARACNe: improving the accuracy of regulatory model reverse engineering via higher-order data processing inequality tests. Interface Focus. 2013;3(4):20130011.
  • Lahdesmaki H, Shmulevich I, Yli-Harja O. On learning gene regulatory networks under the Boolean network model. Mach Learn. 2003;52(1–2):147–167.
  • Wang J, Peng X, Peng W, et al. Dynamic protein interaction network construction and applications. Proteomics. 2014;14(4–5):338–352.
  • Zhang X, Xu J, Xiao WX. A new method for the discovery of essential proteins. PLoS One. 2013;8(3):e58763.
  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics MCP. 2005;4(10):1419–1440.
  • Luo F, Yang Y, Zhong J, et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics. 2007;8:299.
  • Siegenthaler C, Gunawan R. Assessment of network inference methods: how to cope with an underdetermined problem. PLoS One. 2014;9:3.
  • Chen G, Cairelli MJ, Kilicoglu H, et al. Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference. PLoS Comput Biol. 2014;10(6):e1003666.
  • Haider S, Pal R. Boolean network inference from time series data incorporating prior biological knowledge. BMC Genomics. 2012;13(Suppl 6):S9.
  • Rakshit H, Rathi N, Roy D, et al. Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson’s disease. PLoS One. 2014;9(8):e103047.
  • Sardiu ME, Washburn MP. Building protein-protein interaction networks with proteomics and informatics tools. J Biol Chem. 2011;286(27):23645–23651.
  • Harvey I, Bossomaier T. Time out of joint: attractors in asynchronous random Boolean networks. In: Husbands P, Harvey I, editors. Proceedings of the fourth European conference on artificial life (ECAL97). MIT Press; 1997. p. 67–75.
  • D’Haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics. 2000;16(8):707–726.
  • Wachter A, Beissbarth T. pwOmics: an R package for pathway-based integration of time-series omics data using public database knowledge. Bioinformatics. 2015;31(18):3072–3074.
  • Li W. Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinform Comput Biol. 2012;10(6):1231003.
  • Gibb S, Strimmer K. Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis. Bioinformatics. 2015;31(19):3156–3162.
  • Ha MJ, Baladandayuthapani V, Do K-A. DINGO: differential network analysis in genomics. Bioinformatics. 2015;31(21):3413–3420.
  • Murrugarra D, Laubenbacher R. Regulatory patterns in molecular interaction networks. J Theor Biol. 2011;288:66–72.
  • Veliz-Cuba A, Aguilar B, Laubenbacher R. Dimension reduction of large sparse AND-NOT network models. Electron Notes Theor Comput Sci. 2015;316:83–95.
  • Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J Theor Biol. 2002;218(3):331–341.
  • Bender C, Von Der Heyde S, Henjes F, et al. Inferring signalling networks from longitudinal data using sampling based approaches in the R-package ‘ddepn’. BMC Bioinformatics. 2011;12:291.
  • Ivanov I. Boolean models of genomic regulatory networks: reduction mappings, inference, and external control. Curr Genomics. 2009;10(6):375–387.
  • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput. 1999;4:17–28.
  • Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics. 2012;13:328.
  • Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics. 2007;8:22.
  • Hashimoto RF, Kim S, Shmulevich I, et al. Growing genetic regulatory networks from seed genes. Bioinformatics. 2004;20(8):1241–1247.
  • Dougherty ER, Kim S, Chen YD. Coefficient of determination in nonlinear signal processing. Signal Process. 2000;80(10):2219–2235.
  • Ghaffari N, Ivanov I, Qian X, et al. A CoD-based stationary control policy for intervening in large gene regulatory networks. BMC Bioinformatics. 2011;12(Suppl 10):S10.
  • Li H, Sun Y, Zhan M. Analysis of gene coexpression by B-spline based CoD estimation. EURASIP J Bioinform Syst Biol. 2007:2007:49478.
  • Brun M, Sabbagh DL, Kim S, et al. Corrected small-sample estimation of the Bayes error. Bioinformatics. 2003;19(8):944–951.
  • Zheng C-H, Yuan L, Sha W, et al. Gene differential coexpression analysis based on biweight correlation and maximum clique. BMC Bioinformatics. 2014;15(Suppl 15):S3.
  • Kim H, Lee JK, Park T. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinformatics. 2007;8:37.
  • Maucher M, Kracher B, Kuhl M, et al. Inferring Boolean network structure via correlation. Bioinformatics. 2011;27(11):1529–1536.
  • Hopfensitz M, Mussel C, Wawra C, et al. Multiscale binarization of gene expression data for reconstructing Boolean networks. IEEE/ACM Trans Comput Biol Bioinformatics. 2012;9(2):487–498.
  • Maucher M, Kracht DV, Schober S, et al. Inferring Boolean functions via higher-order correlations. Comput Stat. 2014;29(1–2):97–115.
  • Kim J-M, Jung Y-S, Sungur EA, et al. A copula method for modeling directional dependence of genes. BMC Bioinformatics. 2008;9:225.
  • Villaverde AF, Ross J, Moran F, et al. MIDER: network inference with mutual information distance and entropy reduction. PLoS One. 2014;9(5):e96732.
  • Marbach D, Costello JC, Küffner R, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.
  • Pirkl M, Hand E, Kube D, et al. Analyzing synergistic and non-synergistic interactions in signalling pathways using Boolean nested effect models. Bioinformatics. 2015;32(6):893–900.
  • Tjarnberg A, Nordling TE, Studham M, et al. Optimal sparsity criteria for network inference. J Comput Biol J Comput Mol Cell Biol. 2013;20(5):398–408.
  • Catlett NL, Bargnesi AJ, Ungerer S, et al. Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data. BMC Bioinformatics. 2013;14:340.
  • Marbach D, Prill RJ, Schaffter T, et al. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A. 2010;107(14):6286–6291.
  • Lopes FM, Cesar RM, Costa Lda F. Gene expression complex networks: synthesis, identification, and analysis. J Comput Biol J Comput Mol Cell Biol. 2011;18(10):1353–1367.
  • Dougherty ER. Validation of gene regulatory networks: scientific and inferential. Brief Bioinform. 2011;12(3):245–252.
  • Ramirez F, Schlicker A, Assenov Y, et al. Computational analysis of human protein interaction networks. Proteomics. 2007;7(15):2541–2552.
  • Venkatesan K, Rual J-F, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods. 2009;6(1):83–90.
  • Hopfensitz M, Mussel C, Maucher M, et al. Attractors in Boolean networks: a tutorial. Comput Stat. 2013;28(1):19–36.
  • Huang S. Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med. 1999;77(6):469–480.
  • Huang S. Reprogramming cell fates: reconciling rarity with robustness. Bioessays. 2009;31(5):546–560.
  • Zhang SQ, Hayashida M, Akutsu T, et al. Algorithms for finding small attractors in Boolean networks. EURASIP J Bioinform Syst Biol. 2007;2007:20180.
  • Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol. 2011;21(3):183–199.
  • Zheng D, Yang G, Li X, et al. An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. PLoS One. 2013;8(4):e60593.
  • Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinformatics. 2011;8(5):1393–1399.
  • Mushthofa M, Torres G, Van de Peer Y, et al. ASP-G: an ASP-based method for finding attractors in genetic regulatory networks. Bioinformatics. 2014;30(21):3086–3092.
  • Akutsu T, Kosub S, Melkman AA, et al. Finding a periodic attractor of a Boolean network. IEEE/ACM Trans Comput Biol Bioinformatics. 2012;9(5):1410–1421.
  • Melkman AA, Akutsu T. An improved satisfiability algorithm for nested canalyzing functions and its application to determining a singleton attractor of a Boolean network. J Comput Biol J Comput Mol Cell Biol. 2013;20(12):958–969.
  • Melkman AA, Tamura T, Akutsu T. Determining a singleton attractor of an AND/OR Boolean network in time. Inf Process Lett. 2010;110:565–569.
  • Akutsu T, Melkman AA, Tamura T. Singleton and 2-periodic attractors of sign-definite Boolean networks. Inf Process Lett. 2012;112(1–2):35–38.
  • Hayashida M, Tamura T, Akutsu T, et al. Distribution and enumeration of attractors in probabilistic Boolean networks. IET Syst Biol. 2009;3(6):465–474.
  • Kauffman SA. The origins of order: self-organization and selection in evolution. New York: Oxford University Press; 1993.
  • Torres-Sosa C, Huang S, Aldana M, et al. Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Comput Biol. 2012;8:9.
  • Aldana M, Cluzel P. A natural class of robust networks. Proc Natl Acad Sci U S A. 2003;100(15):8710–8714.
  • Derrida B, Pomeau Y. Random networks of automata – a simple annealed approximation. Europhys Lett. 1986;1(2):45–49.
  • Shmulevich I, Kauffman SA. Activities and sensitivities in boolean network models. Phys Rev Lett. 2004;93(4):048701.
  • Del Sol A, Balling R, Hood L, et al. Diseases as network perturbations. Curr Opin Biotechnol. 2010;21(4):566–571.
  • Martin F, Thomson TM, Sewer A, et al. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks. BMC Syst Biol. 2012;6:54.
  • Fornasini E, Valcher ME. Recent developments in Boolean networks control. J Control Decis. 2015;2015:1–18.
  • Datta A, Pal R, Choudhary A, et al. Control approaches for probabilistic gene regulatory networks. IEEE Signal Proc Mag. 2007;24(1):54–63.
  • Zhu P, Liang J, Han J. Gene perturbation and intervention in context-sensitive stochastic Boolean networks. BMC Syst Biol. 2014;8:60.
  • Cheng D, Qi H, Li Z. Analysis and control of Boolean networks: a semi-tensor product approach. London: Springer; 2010.
  • Schober S, Kracht D, Heckel R, et al. Detecting controlling nodes of boolean regulatory networks. EURASIP J Bioinform Syst Biol. 2011;6:2011.
  • Pal R, Bhattacharya S, Caglar MU. Robust approaches for genetic regulatory network modeling and intervention a review of recent advances. IEEE Signal Proc Mag. 2012;29(1):66–76.
  • Asgari Y, Salehzadeh-Yazdi A, Schreiber F, et al. Controllability in cancer metabolic networks according to drug targets as driver nodes. PLoS One. 2013;8:11.
  • Kochi N, Helikar T, Allen L, et al. Sensitivity analysis of biological Boolean networks using information fusion based on nonadditive set functions. BMC Syst Biol. 2014;8:92.
  • Gershenson C. Guiding the self-organization of random Boolean networks. Theory Biosci. 2012;131(3):181–191.
  • Saito T, Saetrom P. MicroRNAs–targeting and target prediction. N Biotechnol. 2010;27(3):243–249.
  • Qian X, Dougherty ER. Intervention in gene regulatory networks via phenotypically constrained control policies based on long-run behavior. IEEE/ACM Trans Comput Biol Bioinformatics. 2011;9:123–136.
  • Lima-Mendez G, van Helden J. The powerful law of the power law and other myths in network biology. Mol Biosyst. 2009;5(12):1482–1493.
  • Liu YY, Slotine JJ, Barabasi AL. Controllability of complex networks. Nature. 2011;473(7346):167–173.
  • Cowan NJ, Chastain EJ, Vilhena DA, et al. Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PLoS One. 2012;7(6):e38398.
  • Muller FJ, Schuppert A. Few inputs can reprogram biological networks. Nature. 2011;478(7369):E4. discussion E4–E5
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Mendelsohn J. Personalizing oncology: perspectives and prospects. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(15):1904–1911.
  • Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol. 2009;20(7):869–876.
  • Nacher JC, Akutsu T. Structural controllability of unidirectional bipartite networks. Sci Rep. 2013;3:1647.
  • Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron–Frobenius theory. Automatica. 2012;48(6):1218–1223.
  • Chen X, Jiang H, Qiu Y, et al. On optimal control policy for probabilistic Boolean network: a state reduction approach. BMC Syst Biol. 2012;6(Suppl 1):S8.
  • Molnar F, Sreenivasan S, Szymanski BK, et al. Minimum dominating sets in scale-free network ensembles. Sci Rep. 2013;3:1736.
  • Khuri S, Wuchty S. Essentiality and centrality in protein interaction networks revisited. BMC Bioinformatics. 2015;16:109.
  • Wuchty S. Controllability in protein interaction networks. Proc Natl Acad Sci U S A. 2014;111(19):7156–7160.
  • Milenkovic T, Memisevic V, Bonato A, et al. Dominating biological networks. PLoS One. 2011;6(8):e23016.
  • Menichetti G, Dall’Asta L, Bianconi G. Network controllability is determined by the density of low in-degree and out-degree nodes. Phys Rev Lett. 2014;113:7.
  • Guelzim N, Bottani S, Bourgine P, et al. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet. 2002;31(1):60–63.
  • Wu FX, Wu L, Wang J, et al. Transittability of complex networks and its applications to regulatory biomolecular networks. Sci Rep. 2014;4:4819.
  • Wu L, Shen Y, Li M, et al. Network output controllability-based method for drug target identification. IEEE Trans Nanobiosci. 2015;14(2):184–191.
  • Qiu Y, Tamura T, Ching WK, et al. On control of singleton attractors in multiple Boolean networks: integer programming-based method. BMC Syst Biol. 2014;8(Suppl 1):S7.
  • Kobayashi K, Hiraishi K. Optimal control of gene regulatory networks with effectiveness of multiple drugs: a Boolean network approach. Biomed Res Int. 2013;246761:2013.
  • Campbell C, Albert R. Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Syst Biol. 2014;8:53.
  • Zanudo JG, Albert R. Cell fate reprogramming by control of intracellular network dynamics. PLoS Comput Biol. 2015;11(4):e1004193.
  • Mischnik M, Boyanova D, Hubertus K, et al. A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation. Mol Biosyst. 2013;9(6):1326–1339.
  • Anderson J, Chang Y-C, Papachristodoulou A. Model decomposition and reduction tools for large-scale networks in systems biology. Automatica. 2011;47(6):1165–1174.
  • Zanudo JG, Albert R. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos. 2013;23(2):025111.
  • Terfve CD, Wilkes EH, Casado P, et al. Large-scale models of signal propagation in human cells derived from discovery phosphoproteomic data. Nat Commun. 2015;6:8033.
  • Bhatia S, Frangioni JV, Hoffman RM, et al. The challenges posed by cancer heterogeneity. Nat Biotechnol. 2012;30(7):604–610.
  • Qin G, Zhao X-M. A survey on computational approaches to identifying disease biomarkers based on molecular networks. J Theor Biol. 2014;362:9–16.
  • Mayer P, Mayer B, Mayer G. Systems biology: building a useful model from multiple markers and profiles. Nephrol Dial Transplant. 2012;27(11):3995–4002.
  • Azuaje FJ, Dewey FE, Brutsaert DL, et al. Systems-based approaches to cardiovascular biomarker discovery. Circ Cardiovasc Genet. 2012;5(3):360–367.
  • Dehmer M, Mueller LAJ, Emmert-Streib F. Quantitative network measures as biomarkers for classifying prostate cancer disease states: a systems approach to diagnostic biomarkers. PLoS One. 2013;8:11.
  • Yu X, Li G, Chen L. Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics. 2014;30(6):852–859.
  • Zhang W, Zeng T, Chen L. EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J Theor Biol. 2014;362:35–43.
  • Zeng T, Sun S-Y, Wang Y, et al. Network biomarkers reveal dysfunctional gene regulations during disease progression. Febs J. 2013;280(22):5682–5695.
  • Liu R, Wang X, Aihara K, et al. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev. 2014;34(3):455–478.
  • Benso A, Di Carlo S, Politano G, et al. An extended gene protein/products Boolean network model including post-transcriptional regulation. Theor Biol Med Model. 2014;11(Suppl 1):S5.
  • Emmert-Streib F, Dehmer M, Haibe-Kains B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front Cell Dev Biol. 2014;2:38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.