307
Views
10
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis of Aspergillus fumigatus – clinical implications

, &
Pages 635-649 | Received 29 Apr 2016, Accepted 16 Jun 2016, Published online: 04 Jul 2016

References

  • Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310–350.
  • Dagenais TRT, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–465.
  • Margalit A, Kavanagh K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol Rev. 2015;39(5):670–687.
  • Owens RA, O’Keeffe G, O’Hanlon KA, et al. Virulence characteristics of Aspergillus fumigatus. In: Sullivan DJ, Moran GP, editor. Human pathogenic fungi: molecular biology and pathogenic mechanisms. Norfolk: Caister Academic Press; 2014. p. 163–194.
  • Knutsen AP, Bush RK, Demain JG, et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012;129(2):280–91; quiz 292–3.
  • Kousha M, Tadi R, Soubani AO. Pulmonary aspergillosis: a clinical review. Eur Respir Rev. 2011;20(121):156–174.
  • Baddley JW. Clinical risk factors for invasive aspergillosis. Med Mycol. 2011;49(Suppl 1):S7–S12.
  • Kwon-Chung KJ, Sugui JA. Aspergillus fumigatus – what makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013;9(12):e1003743.
  • Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438(7071):1151–1156.
  • Kniemeyer O, Schmidt AD, Vödisch M, et al. Identification of virulence determinants of the human pathogenic fungi Aspergillus fumigatus and Candida albicans by proteomics. Int J Med Microbiol. 2011;301(5):368–377.
  • Doyle S. Fungal proteomics: from identification to function. FEMS Microbiol Lett. 2011;321(1):1–9.
  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–247.
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng. 2009;11:49–79.
  • Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–2394.
  • Ouyang H, Luo Y, Zhang L, et al. Proteome analysis of Aspergillus fumigatus total membrane proteins identifies proteins associated with the glycoconjugates and cell wall biosynthesis using 2D LC-MS/MS. Mol Biotechnol. 2010;44(3):177–189.
  • Moloney NM, Owens RA, Meleady P, et al. The iron-responsive microsomal proteome of Aspergillus fumigatus. J Proteomics. 2016;136:99–111.
  • Gautam P, Sundaram CS, Madan T, et al. Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach. Clin Exp Allergy. 2007;37(8):1239–1249.
  • Asif AR, Oellerich M, Amstrong VW, et al. Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis. 2010;31(12):1947–1958.
  • Singh B, Sharma GL, Oellerich M, et al. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia. J Proteome Res. 2010;9(11):5530–5541.
  • Singh B, Oellerich M, Kumar R, et al. Immuno-reactive molecules identified from the secreted proteome of Aspergillus fumigatus. J Proteome Res. 2010;9(11):5517–5529.
  • Kumar A, Ahmed R, Singh PK, et al. Identification of virulence factors and diagnostic markers using immunosecretome of Aspergillus fumigatus. J Proteomics. 2011;74(7):1104–1112.
  • Shi L, Li F, Huang M, et al. Immunoproteomics based identification of thioredoxin reductase GliT and novel Aspergillus fumigatus antigens for serologic diagnosis of invasive aspergillosis. BMC Microbiol. 2012;12(1):11.
  • Virginio ED, Kubitschek-Barreira PH, Batista MV, et al. Immunoproteome of Aspergillus fumigatus using sera of patients with invasive aspergillosis. Int J Mol Sci. 2014;15(8):14505–14530.
  • Teutschbein J, Simon S, Lother J, et al. Proteomic profiling of serological responses to Aspergillus fumigatus antigens in patients with invasive aspergillosis. J Proteome Res. 2016;15:1580–1591.
  • Asif AR, Oellerich M, Amstrong VW, et al. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res. 2006;5(4):954–962.
  • Carberry S, Neville CM, Kavanagh K, et al. Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun. 2006;341(4):1096–1104.
  • Kniemeyer O, Lessing F, Scheibner O, et al. Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet. 2006;49(3):178–189.
  • Vödisch M, Albrecht D, Lessing F, et al. Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. Proteomics. 2009;9(5):1407–1415.
  • Teutschbein J, Albrecht D, Pötsch M, et al. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res. 2010;9(7):3427–3442.
  • Cagas SE, Jain MR, Li H, et al. The proteomic signature of Aspergillus fumigatus during early development. Mol Cell Proteomics. 2011;10(11):M111.010108.
  • Suh M-J, Fedorova ND, Cagas SE, et al. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus fumigatus conidial proteome. Proteome Sci. 2012;10(1):30.
  • Kubitschek-Barreira PH, Curty N, Neves GWP, et al. Differential proteomic analysis of Aspergillus fumigatus morphotypes reveals putative drug targets. J Proteomics. 2013;78:522–534.
  • Sugui JA, Kim HS, Zarember KA, et al. Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. PLoS One. 2008;3(7):e2655.
  • Vödisch M, Scherlach K, Winkler R, et al. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res. 2011;10(5):2508–2524.
  • McDonagh A, Fedorova ND, Crabtree J, et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 2008;4(9):e1000154.
  • Suzuki S, Sarikaya Bayram Ö, Bayram Ö, et al. conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol. 2013;56:42–53.
  • Romano J, Nimrod G, Ben-Tal N, et al. Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology. 2006;152(Pt 7):1919–1928.
  • Bauer B, Schwienbacher M, Broniszewska M, et al. Characterisation of the CipC-like protein AFUA_5G09330 of the opportunistic human pathogenic mould Aspergillus fumigatus. Mycoses. 2010;53(4):296–304.
  • Liu M, Gelli A. Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans. Eukaryot Cell. 2008;7(7):1118–1126.
  • Chaudhuri R, Ansari FA, Raghunandanan MV, et al. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics. 2011;12(1):192.
  • Gozalbo D, Gil-Navarro I, Azorín I, et al. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun. 1998;66(5):2052–2059.
  • Kinoshita H, Wakahara N, Watanabe M, et al. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol. 2008;159(9–10):685–691.
  • Denikus N, Orfaniotou F, Wulf G, et al. Fungal antigens expressed during invasive aspergillosis. Infect Immun. 2005;73(8):4704–4713.
  • Funk J, Schaarschmidt B, Slesiona S, et al. The glycolytic enzyme enolase represents a plasminogen-binding protein on the surface of a wide variety of medically important fungal species. Int J Med Microbiol. 2016;306(1):59–68.
  • Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–1121.
  • Lee MJ, Sheppard DC. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol. 2016;54(3):232–242.
  • Beauvais A, Bozza S, Kniemeyer O, et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog. 2013;9(11):e1003716.
  • Latgé J-P. Tasting the fungal cell wall. Cell Microbiol. 2010;12(7):863–872.
  • Sheppard DC. Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Curr Opin Microbiol. 2011;14(4):375–379.
  • de Groot PWJ, Bader O, de Boer AD, et al. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 2013;12(4):470–481.
  • Upadhyay SK, Mahajan L, Ramjee S, et al. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J Med Microbiol. 2009;58(Pt 6):714–722.
  • Upadhyay SK, Gautam P, Pandit H, et al. Identification of fibrinogen-binding proteins of Aspergillus fumigatus using proteomic approach. Mycopathologia. 2012;173(2–3):73–82.
  • Kumar A, Shukla PK. A monoclonal antibody against glycoproteins of Aspergillus fumigatus shows anti-adhesive potential. Microb Pathog. 2015;79:24–30.
  • Kuboi S, Ishimaru T, Tamada S, et al. Molecular characterization of AfuFleA, an L-fucose-specific lectin from Aspergillus fumigatus. J Infect Chemother. 2013;19(6):1021–1028.
  • Houser J, Komarek J, Kostlanova N, et al. A soluble fucose-specific lectin from Aspergillus fumigatus conidia – structure, specificity and possible role in fungal pathogenicity. PLoS One. 2013;8(12):e83077.
  • Kerr SC, Fischer GJ, Sinha M, et al. FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 2016;12(4):e1005555.
  • Osherov N. The virulence of Aspergillus fumigatus. In: Kavanagh K, editor. New insights in medical mycology. Dordrecht: Springer Netherlands; 2007. p. 185–212.
  • Schrettl M, Carberry S, Kavanagh K, et al. Self-protection against gliotoxin — a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 2010;6(6):e1000952.
  • Shi L, Li F, Lu J, et al. Antibody specific to thioredoxin reductase as a new biomarker for serodiagnosis of invasive aspergillosis in non-neutropenic patients. Clin Chim Acta. 2012;413(9–10):938–943.
  • Wartenberg D, Lapp K, Jacobsen ID, et al. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol. 2011;301(7):602–611.
  • Yike I. Fungal proteases and their pathophysiological effects. Mycopathologia. 2011;171(5):299–323.
  • Farnell E, Rousseau K, Thornton DJ, et al. Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates. Fungal Biol. 2012;116(9):1003–1012.
  • Namvar S, Warn P, Farnell E, et al. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy. 2015;45(5):982–993.
  • Balenga NA, Klichinsky M, Xie Z, et al. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun. 2015;6:6763.
  • Behnsen J, Lessing F, Schindler S, et al. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun. 2010;78(8):3585–3594.
  • Bergmann A, Hartmann T, Cairns T, et al. A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect Immun. 2009;77(9):4041–4050.
  • Sharon H, Hagag S, Osherov N. Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun. 2009;77(9):4051–4060.
  • Hagag S, Kubitschek-Barreira P, Neves GWP, et al. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant. PLoS One. 2012;7(4):e33604.
  • Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol. 2014;52(1):2–9.
  • Bruns S, Seidler M, Albrecht D, et al. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics. 2010;10(17):3097–3107.
  • Muszkieta L, Beauvais A, Pähtz V, et al. Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Front Microbiol. 2013;4:13.
  • Dolan SK, O’Keeffe G, Jones GW, et al. Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol. 2015;23(7):419–428.
  • Owens RA, Hammel S, Sheridan KJ, et al. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus. PLoS One. 2014;9(9):e106942.
  • Carberry S, Molloy E, Hammel S, et al. Gliotoxin effects on fungal growth: mechanisms and exploitation. Fungal Genet Biol. 2012;49(4):302–312.
  • Owens RA, O’Keeffe G, Smith EB, et al. Interplay between gliotoxin resistance, secretion, and the methyl/methionine cycle in Aspergillus fumigatus. Eukaryot Cell. 2015;14(9):941–957.
  • Scharf DH, Remme N, Heinekamp T, et al. Transannular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. J Am Chem Soc. 2010;132(29):10136–10141.
  • Cramer RA, Gamcsik MP, Brooking RM, et al. Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell. 2006;5(6):972–980.
  • Dolan SK, Owens RA, O’Keeffe G, et al. Regulation of nonribosomal peptide synthesis: bis-Thiomethylation attenuates gliotoxin biosynthesis in Aspergillus fumigatus. Chem Biol. 2014;21(8):999–1012.
  • Scharf DH, Habel A, Heinekamp T, et al. Opposed effects of enzymatic gliotoxin N - and S -methylations. J Am Chem Soc. 2014;136(33):11674–11679.
  • Duell ER, Glaser M, Le Chapelain C, et al. Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA. ACS Chem Biol. 2016;11(4):1082–1089.
  • Balibar CJ, Walsh CT. GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry. 2006;45(50):15029–15038.
  • O’Keeffe G, Hammel S, Owens RA, et al. RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics. 2014;15(1):894.
  • Suliman HS, Appling DR, Robertus JD. The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Arch Biochem Biophys. 2007;467(2):218–226.
  • Sieńko M, Natorff R, Zieliński Z, et al. Two Aspergillus nidulans genes encoding methylenetetrahydrofolate reductases are up-regulated by homocysteine. Fungal Genet Biol. 2007;44(7):691–700.
  • Strauss J, Reyes-Dominguez Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol. 2011;48(1):62–69.
  • Burgos ES, Gulab SA, Cassera MB, et al. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase. Anal Chem. 2012;84(8):3593–3598.
  • Gallagher L, Owens RA, Dolan SK, et al. The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis. Eukaryot Cell. 2012;11(10):1226–1238.
  • Jones GW, Doyle S, Fitzpatrick DA. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine. Gene. 2014;549(1):161–170.
  • Grahl N, Puttikamonkul S, Macdonald JM, et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog. 2011;7(7):e1002145.
  • Tuder RM, Yun JH, Bhunia A, et al. Hypoxia and chronic lung disease. J Mol Med (Berl). 2007;85(12):1317–1324.
  • Kamath KS, Kumar SS, Kaur J, et al. Proteomics of hosts and pathogens in cystic fibrosis. Proteomics Clin Appl. 2015;9(1–2):134–146.
  • Barker BM, Kroll K, Vödisch M, et al. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics. 2012;13:62.
  • Grahl N, Shepardson KM, Chung D, et al. Hypoxia and fungal pathogenesis: to air or not to air? Eukaryot Cell. 2012;11(5):560–570.
  • Ishikawa M, Ninomiya T, Akabane H, et al. Pseurotin A and its analogues as inhibitors of immunoglobulin E [correction of immunoglobuline E] production. Bioorg Med Chem Lett. 2009;19(5):1457–1460.
  • Schmeda-Hirschmann G, Hormazabal E, Rodriguez JA, et al. Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Zeitschrift Für Naturforsch C. 2008;63(5–6):383–388.
  • Kroll K, Shekhova E, Mattern DJ, et al. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence of Aspergillus fumigatus. Mol Microbiol. 2016;101(1):92–108.
  • Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1–14.
  • Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host & Microbe. 2013;13(5):509–519.
  • Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep. 2014;31(10):1266–1276.
  • Schrettl M, Bignell E, Kragl C, et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med. 2004;200(9):1213–1219.
  • Hissen AHT, Wan ANC, Warwas ML, et al. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun. 2005;73(9):5493–5503.
  • Petrik M, Haas H, Dobrozemsky G, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med. 2010;51(4):639–645.
  • Petrik M, Franssen GM, Haas H, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39(7):1175–1183.
  • Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71(3):413–451.
  • Lamb AL. Breaking a pathogen’s iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta. 2015;1854(8):1054–1070. •
  • Heinekamp T, Thywißen A, Macheleidt J, et al. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol. 2013;3:440.
  • Heinekamp T, Schmidt H, Lapp K, et al. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol. 2015;37(2):141–152.
  • Brown NA, Goldman GH. The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol. 2016;54(3):243–253.
  • Sadler NC, Wright AT. Activity-based protein profiling of microbes. Curr Opin Chem Biol. 2015;24:139–144.
  • Wiedner SD, Burnum KE, Pederson LM, et al. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum. J Biol Chem. 2012;287(40):33447–33459.
  • Valiante V, Macheleidt J, Föge M, et al. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol. 2015;6:325.
  • Cagas SE, Jain MR, Li H, et al. Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother. 2011;55(1):146–154.
  • Verwer PEB, van Duijn ML, Tavakol M, et al. Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob Agents Chemother. 2012;56(3):1595–1598.
  • Lamoth F, Juvvadi PR, Fortwendel JR, et al. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell. 2012;11(11):1324–1332.
  • Albrecht D, Guthke R, Brakhage AA, et al. Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics. 2010;11(1):32.
  • O’Keeffe G, Jöchl C, Kavanagh K, et al. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus. Protein Sci. 2013;22(11):1612–1622.
  • Gautam P, Shankar J, Madan T, et al. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B. Antimicrob Agents Chemother. 2008;52(12):4220–4227.
  • Shakoury-Elizeh M, Protchenko O, Berger A, et al. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem. 2010;285(19):14823–14833.
  • Gautam P, Mushahary D, Hassan W, et al. In-depth 2-DE reference map of Aspergillus fumigatus and its proteomic profiling on exposure to itraconazole. Med Mycol. 2016;54(5):524–536.
  • Gautam P, Upadhyay SK, Hassan W, et al. Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin. Mycopathologia. 2011;172(5):331–346.
  • Gupta S, Singh S, Kathuria A, et al. Ammonium derivatives of chromenones and quinolinones as lead antimicrobial agents. J Chem Sci. 2011;124(2):437–449.
  • Singh S, Gupta S, Singh B, et al. Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarin for identification of novel target molecules of key pathways. J Proteome Res. 2012;11(6):3259–3268.
  • Ito JI, Lyons JM, Diaz-Arevalo D, et al. Vaccine progress. Med Mycol. 2009;47(Suppl 1(Supplement 1)):S394–400.
  • Stevens DA, Clemons KV, Liu M. Developing a vaccine against aspergillosis. Med Mycol. 2011 April;49(Suppl 1):S170–6.
  • Ito JI, Lyons JM. Vaccination of corticosteroid immunosuppressed mice against invasive pulmonary aspergillosis. J Infect Dis. 2002;186(6):869–871.
  • Ito JI, Lyons JM, Hong TB, et al. Vaccinations with recombinant variants of Aspergillus fumigatus allergen Asp f 3 protect mice against invasive aspergillosis. Infect Immun. 2006;74(9):5075–5084.
  • Champer J, Diaz-Arevalo D, Champer M, et al. Protein targets for broad-spectrum mycosis vaccines: quantitative proteomic analysis of Aspergillus and Coccidioides and comparisons with other fungal pathogens. Ann N Y Acad Sci. 2012;1273:44–51.
  • Champer J, Ito J, Clemons K, et al. Proteomic analysis of pathogenic fungi reveals highly expressed conserved cell wall proteins. J Fungi. 2016;2(1):6.
  • Bacher P, Kniemeyer O, Teutschbein J, et al. Identification of immunogenic antigens from Aspergillus fumigatus by direct multiparameter characterization of specific conventional and regulatory CD4+ T cells. J Immunol. 2014;193(7):3332–3343.
  • Sasikumar AN, Kinzy TG. Mutations in the chromodomain-like insertion of translation elongation factor 3 compromise protein synthesis through reduced ATPase activity. J Biol Chem. 2014;289(8):4853–4860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.