432
Views
22
CrossRef citations to date
0
Altmetric
Review

Spaceflight induced changes in the human proteome

, , , , , , , & show all
Pages 15-29 | Received 02 Sep 2016, Accepted 04 Nov 2016, Published online: 21 Nov 2016

References

  • Williams D, Kuipers A, Mukai C, et al. Acclimation during space flight: effects on human physiology. Can Med Assoc J. 2009;180(13):1317–1323.
  • Grimm D, Pietsch J, Wehland M, et al. The impact of microgravity-based proteomics research. Expert Rev Proteomics. 2014;11(4):465–476.
  • Convertino VA. Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures. J Gravit Physiol. 2002;9(2):1–13.
  • Stein TP. Weight, muscle and bone loss during space flight: another perspective. Eur J Appl Physiol. 2013;113(9):2171–2181.
  • Davidson JM, Aquino AM, Woodward SC, et al. Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat. Faseb J. 1999;13(2):325–329.
  • Kaur I, Simons ER, Castro VA, et al. Changes in monocyte functions of astronauts. Brain Behav Immun. 2005;19(6):547–554.
  • Crucian B, Stowe R, Quiriarte H, et al. Monocyte phenotype and cytokine production profiles are dysregulated by short-duration spaceflight. Aviat Space Environ Med. 2011;82(9):857–862.
  • Kaur I, Simons ER, Castro VA, et al. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2004;18(5):443–450.
  • Meigal A. Interplanetary space flight compared with fetal/neonatal motor strategy: theoretical and practical implications. Pathophysiol. 2012;19(4):269–276.
  • Grigoriev AI, Egorov AD. General mechanisms of the effect of weightlessness on the human body. Adv Space Biol Med. 1992;2:1–42.
  • Heppener M. Spaceward ho! the future of humans in space. EMBO Rep. 2008;9(Suppl 1):S4–12.
  • Di Prampero PE, Narici MV. Muscles in microgravity: from fibres to human motion. J Biomech. 2003;36(3):403–412.
  • Watanabe Y, Ohshima H, Mizuno K, et al. Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res. 2004;19(11):1771–1778.
  • Barcellos-Hoff MH, Blakely EA, Burma S, et al. Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sci Space Res. 2015;6:92–103.
  • Boerma M, Nelson GA, Sridharan V, et al. Space radiation and cardiovascular disease risk. World J Cardiol. 2015;7(12):882–888.
  • Reynolds RJ, Day SM, Nurgalieva ZZ. Mortality among soviet and Russian cosmonauts: 1960-2013. Aviat Space Environ Med. 2014;85(7):750–754.
  • Reynolds RJ, Day SM. Mortality among U.S. astronauts: 1980-2009. Aviat Space Environ Med. 2010;81(11):1024–1027.
  • Schmidt MA, Goodwin TJ. Personalized medicine in human space flight: using omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance. Metabolomics. 2013;9(6):1134–1156.
  • Rea G, Cristofaro F, Pani G, et al. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics. 2016;137:3–18.
  • Nichols HL, Zhang N, Wen X. Proteomics and genomics of microgravity. Physiol Genomics. 2006;26(3):163–171.
  • Leach-Huntoon CSGAI, Natochin Yu V. Fluid and electrolyte regulation in spaceflight. Washington: Аmerican astronautical society AAS Publications Office; 1998.
  • Norsk P, Christensen NJ, Bie P, et al. Unexpected renal responses in space. Lancet. 2000;356(9241):1577–1578.
  • Kotovskaia AR, Fomin GA. [Prediction of human orthostatic tolerance by changes in arterial and venous hemodynamics in the microgravity environment]. Fiziol Cheloveka. 2013;39(5):25–33.
  • Sampson DL, Broadbent JA, Parker AW, et al. Urinary biomarkers of physical activity: candidates and clinical utility. Expert Rev Proteomics. 2014;11(1):91–106.
  • Enea C, Seguin F, Petitpas-Mulliez J, et al. (1)H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem. 2010;396(3):1167–1176.
  • Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461–471.
  • Mukherjee K, Edgett BA, Burrows HW, et al. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes. Plos One. 2014;9(3):e92031.
  • Sheedy JR, Gooley PR, Nahid A, et al. (1)H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium-vitamin-D3 supplementation in older men. Appl Physiol Nutr Metab. 2014;39(11):1294–1304.
  • Daskalaki E, Blackburn G, Kalna G, et al. A study of the effects of exercise on the urinary metabolome using normalisation to individual metabolic output. Metabolites. 2015;5(1):119–139.
  • Daskalaki E, Easton C, G.Watson D. The application of metabolomic profiling to the effects of physical activity. Curr Metabolomics. 2015;2(4):233–263.
  • Bouwman FG, De Roos B, Rubio-Aliaga I, et al. 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting. BMC Med Genomics. 2011;4:24.
  • Binder H, Wirth H, Arakelyan A, et al. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014;15(Suppl 12):S2.
  • May DH, Navarro SL, Ruczinski I, et al. Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. Br J Nutr. 2013;110(10):1760–1770.
  • Pujos-Guillot E, Hubert J, Martin JF, et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J Proteome Res. 2013;12(4):1645–1659.
  • Larina IM, Ivanisenko VA, Nikolaev EN, et al. The proteome of a healthy human during physical activity under extreme conditions. Acta Naturae. 2014;6(3):66–75.
  • Titze J, Krause H, Hecht H, et al. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am J Physiol Renal Physiol. 2002;283(1):F134–141.
  • Noskov VB. [Adaptation of water-electrolytes metabolism to space flight and in its imitation]. Fiziol Cheloveka. 2013;39(5):119–125.
  • Butler GC, Xing HC, Hughson RL. Cardiovascular response to 4 hours of 6 degrees head-down tilt or of 30 degrees head-up tilt bed rest. Aviat Space Environ Med. 1990;61(3):240–246.
  • Pavy-Le Traon A, Heer M, Narici MV, et al. From space to earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur J Appl Physiol. 2007;101(2):143–194.
  • Moriggi M, Vasso M, Fania C, et al. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics. 2010;10(21):3756–3774.
  • Navasiolava NM, Custaud MA, Tomilovskaya ES, et al. Long-term dry immersion: review and prospects. Eur J Appl Physiol. 2011;111(7):1235–1260.
  • Morukov BVDEP, Vasilieva GY. Experiment with 105-day isolation modeling some elements of a mission to mars: objectives, scope and structure of researches. Aviakosmicheskaya I Ekologicheskaya Meditsina. 2010;44(4):3–5.
  • Larina IM, Pastushkova L, Tiys ES, et al. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J Bioinform Comput Biol. 2015;13(1):1540001.
  • Pakharukova NA, Pastushkova LK, Larina IM, et al. Changes of human serum proteome profile during 7-day “dry” immersion. Acta Astronaut. 2011;68(9–10):1523–1528.
  • Ferrando AA, Paddon-Jones D, Wolfe RR. Alterations in protein metabolism during space flight and inactivity. Nutrition. 2002;18(10):837–841.
  • Capitanio D, Vasso M, Fania C, et al. Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE. Proteomics. 2009;9(7):2004–2020.
  • Cogoli A, Tschopp A, Fuchs-Bislin P. Cell sensitivity to gravity. Science. 1984;225(4658):228–230.
  • Grosse J, Wehland M, Pietsch J, et al. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells. Faseb J. 2012;26(2):639–655.
  • LeBlanc AD, Spector ER, Evans HJ, et al. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact. 2007;7(1):33–47.
  • Nabavi N, Khandani A, Camirand A, et al. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone. 2011;49(5):965–974.
  • Rizzo AM, Altiero T, Corsetto PA, et al. Space flight effects on antioxidant molecules in dry tardigrades: the TARDIKISS experiment. BioMed Res Int. 2015;167642:1-7.
  • Biolo G, Ciocchi B, Lebenstedt M, et al. Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol. 2004;558(Pt 2):381–388.
  • Guseva EV, Tashpulatov R. [Effect of flights of varying duration on the blood protein makeup of cosmonauts]. Kosm Biol Aviakosm Med. 1980;14(1):13–17.
  • Horvath I, Hunt J, Barnes PJ, et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J. 2005;26(3):523–548.
  • McPhee J. Life sciences research standardization. J Gravit Physiol. 2006;13:59–71.
  • Sonnenfeld G. Use of animal models for space flight physiology studies, with special focus on the immune system. Gravit Space Biol Bul. 2005;18(2):31–35.
  • Pardo SJ, Patel MJ, Sykes MC, et al. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am J Physiol Cell Physiol. 2005;288(6):C1211–1221.
  • Ulbrich C, Wehland M, Pietsch J, et al. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Res Int. 2014;928507:1-15.
  • Allen DL, Bandstra ER, Harrison BC, et al. Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol. 2009;106(2):582–595.
  • Hatton DC, Yue Q, Dierickx J, et al. Calcium metabolism and cardiovascular function after spaceflight. J Appl Physiol. 2002;92(1):3–12.
  • Crucian B, Sams C. Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol. 2009;86(5):1017–1018.
  • Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res. 1997;6(1):1–8.
  • Pastushkova L, Custaud MA, Kononikhin AS, et al. [Modification of urine proteome in healthy human during 21-day bed rest]. Aviakosm Ekolog Med. 2015;49(5):11–16.
  • Pakharukova NA, Pastushkova LK, Samarin GI, et al. Direct proteome profiling of the blood serum in cosmonauts after long-term space missions. Hum Physiol. 2014;40(7):713–717.
  • Ogawa T, Furochi H, Mameoka M, et al. Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest. Muscle Nerve. 2006;34(4):463–469.
  • Chen YW, Gregory CM, Scarborough MT, et al. Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics. 2007;31(3):510–520.
  • O’Connell K, Ohlendieck K. Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics. 2009;9(24):5509–5524.
  • Salanova M, Gelfi C, Moriggi M, et al. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. Faseb J. 2014;28(11):4748–4763.
  • Tomilovskaia ES. [Experiment with 5-day dry immersion: objectives, content and structure of the investigations, methods]. Aviakosm Ekolog Med. 2011;45(6):3–7.
  • Pastushkova LH, Dobrokhotov IV, Veselova OM, et al. [Identification proteins cardiovascular system in urine healthy subjects during “dry” immersion]. Fiziol Cheloveka. 2014;40(3):109–119.
  • Grimm D, Infanger M, Westphal K, et al. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A. 2009;15(8):2267–2275.
  • Ulbrich C, Westphal K, Pietsch J, et al. Characterization of human chondrocytes exposed to simulated microgravity. Cel Physiol Biochem. 2010;25(4–5):551–560.
  • Meloni MA, Galleri G, Pani G, et al. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton. 2011;68(2):125–137.
  • Grimm D, Bauer J, Kossmehl P, et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. Faseb J. 2002;16(6):604–606.
  • Tedeschi G, Pagliato L, Negroni M, et al. Protein pattern of xenopus laevis embryos grown in simulated microgravity. Cell Biol Int. 2011;35(3):249–258.
  • Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93(4):647–654.
  • Decamps G. A longitudinal assessment of psychological adaptation during a winter-over in Antarctica. Environ Behav. 2005;37(3):418–435.
  • Palinkas LA, Houseal M. Stages of change in mood and behavior during a winter in Antarctica. Environ Behav. 2000;32(1):128–141.
  • Trifonova OP, Pastushkova L, Samenkova NF, et al. The study of the proteome of healthy human blood plasma under conditions of long-term confinement in an isolation chamber. Bull Exp Biol Med. 2013;155(1):37–39.
  • Larina IM, Kolchanov NA, Dobrokhotov IV, et al. [Reconstruction of associative protein networks connected with processes of sodium exchange’ regulation and sodium deposition in healthy volunteers by urine proteome analysis]. Fiziol Cheloveka. 2012;38(3):107–115.
  • Khristenko NA, Larina IM, Domon B. Longitudinal urinary protein variability in participants of the space flight simulation program. J Proteome Res. 2016;15(1):114–124.
  • Baranov VM. Physiological analysis of the possible causes of hypoxemia under conditions of weightlessness. Hum Physiol. 2011;37(4):455–460.
  • Gozal D, Jortani S, Snow AB, et al. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med. 2009;180(12):1253–1261.
  • Drager LF, Jun J, Polotsky VY. Obstructive sleep apnea and dyslipidemia: implications for atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):161–165.
  • Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res. 2005;97(7):698–706.
  • Hughes AL, Todd BL, Espenshade PJ. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell. 2005;120(6):831–842.
  • Li J, Bosch-Marce M, Nanayakkara A, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics. 2006;25(3):450–457.
  • Semenza GL. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol. 2006;91(5):803–806.
  • Li J, Savransky V, Nanayakkara A, et al. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia. J Appl Physiol. 2007;102(2):557–563.
  • Semenza GL, Prabhakar NR. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007;9(9):1391–1396.
  • Savransky V, Jun J, Li J, et al. Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase. Circ Res. 2008;103(10):1173–1180.
  • Turner MJ, Saint-Criq V, Patel W, et al. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. J Physiol. 2016;594(6):1643–1661.
  • Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev. 2013;93(2):803–959.
  • Dada LA, Trejo Bittar HE, Welch LC, et al. High CO2 leads to na,k-atpase endocytosis via c-jun amino-terminal kinase-induced LMO7b phosphorylation. Mol Cell Biol. 2015;35(23):3962–3973.
  • Prattichizzo F, De Nigris V, La Sala L, et al. Inflammaging as a Druggable Target: A Senescence-Associated Secretory Phenotype; Centered View of Type 2 Diabetes. Oxid Med Cell Longev. 2016;10:1-10.
  • Kumar GK, Prabhakar NR. Post-translational modification of proteins during intermittent hypoxia. Respir Physiol Neurobiol. 2008;164(1–2):272–276.
  • Pastushkova L, Kireev KS, Kononikhin AS, et al. Detection of renal tissue and urinary tract proteins in the human urine after space flight. Plos One. 2013;8(8):e71652.
  • Whalen R. Musculoskeletal adaptation to mechanical forces on earth and in space. Physiologist. 1993;36(1 Suppl):S127–130.
  • Kozlovskaya IB, Grigoriev AI. Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut. 2004;55(3–9):233–237.
  • Lane HW, Gretebeck RJ, Schoeller DA, et al. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts. Am J Clin Nutr. 1997;65(1):4–12.
  • Stein TP, Leskiw MJ, Schluter MD, et al. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol. 1999;276(6 Pt 1):E1014–1021.
  • Stein TP, Leskiw MJ, Schluter MD. Diet and nitrogen metabolism during spaceflight on the shuttle. J Appl Physiol. 1996;81(1):82–97.
  • Stein TP, Schluter MD. Excretion of IL-6 by astronauts during spaceflight. Am J Physiol. 1994;266(3 Pt 1):E448–452.
  • Crucian BE, Zwart SR, Mehta S, et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res. 2014;34(10):778–786.
  • Grigoriev AI, Popova IA, Ushakov AS. Metabolic and hormonal status of crewmembers in short-term spaceflights. Aviat Space Environ Med. 1987;58(9 Pt 2):A121–125.
  • Guseva EV, Tashpulatov R. [Blood albumin-globulin makeup in the crew of the saliut-3 orbital station]. Kosm Biol Aviakosm Med. 1979;13(3):15–18.
  • Pakharukova NAPLK, Samarin GI, Pochuev VI, et al. Direct proteome profiling of cosmonauts’ blood serum following extended space missions. Aviakosmicheskaya I Ekologicheskaya Meditsina. 2010;44(5):16–20.
  • Stein TP, Schluter MD. Plasma protein synthesis after spaceflight. Aviat Space Environ Med. 2006;77(7):745–748.
  • Popov IG, Latskevich AA. [Blood amino acids in astronauts before and after a 211-day space flight]. Kosm Biol Aviakosm Med. 1984;18(6):10–15.
  • Fomin AN. [Blood fibrinogen during 7-day water immersion and short-term space flight]. Kosm Biol Aviakosm Med. 1981;15(5):83–85.
  • Kimzey SL, Johnson PC, Ritzman SE, et al. Hematology and immunology studies: the second manned skylab mission. Aviat Space Environ Med. 1976;47(4):383–390.
  • Larina ON. Protein composition in human plasma after long-term orbital missions and in rodent plasma after spaceflights on biosatellites “Cosmos-1887” and “Cosmos-2044”. Physiologist. 1991;34(1 Suppl):S94–95.
  • Pastushkova LK, Valeeva OA, Kononikhin AS, et al. Changes in urine protein composition in human organism during long term space flights. Acta Astronaut. 2012;81(2):430–434.
  • Peng J, Jones GL, Watson K. Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med. 2000;28(11):1598–1606.
  • Frohlich M, Deen PM, Klipp E. A systems biology approach: modelling of aquaporin-2 trafficking. Genome Inform. 2010;24:42–55.
  • Pastushkova L, Kireev KS, Kononikhin AS, et al. Detection of renal and urinary tract proteins before and after spaceflight. Aviat Space Environ Med. 2013;84(8):859–863.
  • Vikhlyantsev IM, Okuneva AD, Shpagina MD, et al. Changes in isoform composition, structure, and functional properties of titin from mongolian gerbil (Meriones unguiculatus) cardiac muscle after space flight. Biochemistry (Mosc). 2011;76(12):1312–1320.
  • Brown LR, Frome WJ, Wheatcroft MG, et al. The effect of skylab on the chemical composition of saliva. J Dent Res. 1977;56(10):1137–1143.
  • Buszewski B, Kesy M, Ligor T, et al. Human exhaled air analytics: biomarkers of diseases. Bmc. 2007;21(6):553–566.
  • Brunetti L, Francavilla R, Tesse R, et al. Exhaled breath condensate cytokines and pH in pediatric asthma and atopic dermatitis. Allergy Asthma Proc. 2008;29(5):461–467.
  • Lin J-L, Bonnichsen MH, Nogeh EU, et al. Proteomics in detection and monitoring of asthma and smoking-related lung diseases. Expert Rev Proteomics. 2010;7(3):361–372.
  • Beck O, Olin AC, Mirgorodskaya E. Potential of mass spectrometry in developing clinical laboratory biomarkers of nonvolatiles in exhaled breath. Clin Chem. 2016;62(1):84–91.
  • Kononikhin AS, Fedorchenko KY, Ryabokon AM, et al. [Proteomic analysis of exhaled breath condensate for diagnosis of pathologies of the respiratory system]. Biomed Khim. 2015;61(6):777–780.
  • Fedorchenko KY, Ryabokon AM, Kononikhin AS, et al. [The impact of space flight on the protein composition of the astronauts’ exhaled air condensate]. In Russian Chemical Bulletin. Springer US; Forthcoming 2016.
  • Wang Q, Li X, Ren S, et al. Serum levels of the cancer-testis antigen POTEE and its clinical significance in non-small-cell lung cancer. Plos One. 2015;10(4):e0122792.
  • Kopylov AT, Ilgisonis EV, Moysa AA, et al. Targeted quantitative screening of chromosome 18 encoded proteome in plasma samples of astronaut candidates. J Proteome Res. 2016;15:4039–4046.
  • Terada M, Seki M, Takahashi R, et al. Effects of a closed space environment on gene expression in hair follicles of astronauts in the international space station. Plos One. 2016;11(3):e0150801.
  • Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491–497.
  • Akashi M, Soma H, Yamamoto T, et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A. 2010;107(35):15643–15648.
  • Yasuda H, Yonashiro T, Yoshida K, et al. High toxic metal levels in scalp hair of infants and children. Biomed Res Trace Elem. 2005;16(1):39–45.
  • Yasutake A, Matsumoto M, Yamaguchi M, et al. Current hair mercury levels in Japanese: survey in five districts. Tohoku J Exp Med. 2003;199(3):161–169.
  • Terada M, Kawano F, Ishioka N, et al. Biomedical analysis of rat body hair after hindlimb suspension for 14 days. Acta Astronaut. 2012;73:23–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.