398
Views
17
CrossRef citations to date
0
Altmetric
Review

Prion-like proteins and their computational identification in proteomes

, , &
Pages 335-350 | Received 25 May 2016, Accepted 06 Mar 2017, Published online: 20 Mar 2017

References

  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science, New Series. 1982;216:136–144.
  • Kraus A, Groveman BR, Caughey B. Prions and the potential transmissibility of protein misfolding diseases. Annu Rev Microbiol. 2013;67:543–564.
  • Bakkebø MK, Mouillet-Richard S, Espenes A, et al. The cellular prion protein: a player in immunological quiescence. Front Immunol. 2015;6:1–12.
  • Davenport KA, Henderson DM, Bian J, et al. Insights into chronic wasting disease and bovine spongiform encephalopathy species barriers by use of real-time conversion. J Virol. 2015;89:9524–9531.
  • Cassard H, Torres JM, Lacroux C, et al. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun. 2014;5:5821.
  • Sikorska B, Liberski PP. Human prion diseases: from Kuru to variant Creutzfeldt-Jakob disease. Subcell Biochem. Springer Netherlands. 2012:65:457–496.
  • Kobayashi A, Mizukoshi K, Iwasaki Y, et al. Co-occurrence of types 1 and 2 PrPres in sporadic Creutzfeldt-Jakob disease MM1. Am J Pathol. 2011;178:1309–1315.
  • Das AS, Zou WQ. Prions: beyond a single protein. Clin Microbiol Rev. 2016;29:633–658.
  • Aguzzi A, Polymenidou M. Mammalian prion biology: one century of evolving concepts. Cell. 2004;116:313–327.
  • Eraña H, Castilla J. The architecture of prions: how understanding would provide new therapeutic insights. Swiss Med Wkly. 2016;146:w14354.
  • Harrison PM, Khachane A, Kumar M. Genomic assessment of the evolution of the prion protein gene family in vertebrates. Genomics. 2010;95:268–277.
  • van Rheede T, Smolenaars MM, Madsen O, et al. Molecular evolution of the mammalian prion protein. Mol Biol Evol. 2003;20:111–121.
  • Silva CJ, Vázquez-Fernández E, Onisko B, et al. Proteinase K and the structure of PrPSc: the good, the bad and the ugly. Virus Res. 2015;207:120–126.
  • Safar J, Wille H, Itri V, et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med. 1998;4(10):1157–1165.
  • Büeler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell. 1993;73:1339–1347.
  • Jarrett JT, Lansbury PT Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 1993;73(6):1055–1058.
  • Stohr J, Weinmann N, Wille H, et al. Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S A. 2008;105(7):2409–2414.
  • Caughey B, Baron GS, Chesebro B, et al. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem. 2009;78:177–204.
  • Barron RM, King D, Jeffrey M, et al. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathologica. 2016;132:611–624.
  • Prusiner SB. Molecular biology of prion diseases. Science. 1991;252(5012):1515–1522.
  • Soto C. Prion hypothesis: the end of the controversy? Trends Biochem Sci. 2011;36:151–158.
  • Silva JL, Lima LM, Foguel D, et al. Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci. 2008;33(3):132–140.
  • Geoghegan JC, Valdes PA, Orem NR, et al. Selective incorporation of polyanionic molecules into hamster prions. J Biol Chem. 2007;282(50):36341–36353.
  • Deleault NR, Piro JR, Walsh DJ, et al. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A. 2012;109(22):8546–8551.
  • Silva JL, Gomes MP, Vieira TC, et al. PrP interactions with nucleic acids and glycosaminoglycans in function and disease. Front Biosci (Landmark Ed). 2010;15:132–150.
  • Cordeiro Y, Machado F, Juliano L, et al. DNA converts cellular prion protein into the beta-sheet conformation and inhibits prion peptide aggregation. J Biol Chem. 2001;276(52):49400–49409.
  • Gomes MP, Vieira TC, Cordeiro Y, et al. The role of RNA in mammalian prion protein conversion. Wiley Interdiscip Rev RNA. 2012;3(3):415–428.
  • Gomes MP, Millen TA, Ferreira PS, et al. Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells. J Biol Chem. 2008;283(28):19616–19625.
  • Silva JL, Cordeiro Y. The “Jekyll and Hyde” actions of nucleic acids on the prion-like aggregation of proteins. J Biol Chem. 2016;291(30):15482–15490.
  • Vazquez-Fernandez E, Vos MR, Afanasyev P, et al. The structural architecture of an infectious mammalian prion using electron cryomicroscopy. Plos Pathog. 2016;12(9):e1005835.
  • Sigurdson CJ, Nilsson KPR, Hornemann S, et al. Prion strain discrimination using luminescent conjugated polymers. Nat Methods. 2007;4:1023–1030.
  • Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Biol. 2007;8:552–561.
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science (New York, N.Y.). 2007;318:930–936.
  • Baskakov IV. Switching in amyloid structure within individual fibrils: implication for strain adaptation, species barrier and strain classification. FEBS Lett. 2009;583(16):2618–2622.
  • Castilla J, Gonzalez-Romero D, Saá P, et al. Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell. 2008;134:757–768.
  • Sipe JD, Benson MD, Buxbaum JN, et al. Nomenclature 2014: amyloid fibril proteins and clinical classification of the amyloidosis. Amyloid. 2014;21:221–224.
  • Nizhnikov AA, Antonets KS, Inge-Vechtomov SG. Amyloids: from pathogenesis to function. Biochemistry (Mosc.). 2015;80:1127–1144.
  • Costanzo M, Zurzolo C. The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J. 2013;452:1–17.
  • Goedert M, Falcon B, Clavaguera F, et al. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr Neurol Neurosci Rep. [ Springer US]. 2014:14(11):495.
  • Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem. 2016;139:275–289.
  • Lewis J, Dickson DW. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathologica. 2016;131:27–48.
  • Aguzzi A, Rajendran L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron. 2009;64:783–790.
  • Aguzzi A, Lakkaraju AKK. Cell biology of prions and prionoids: a status report. Trends Cell Biol. Elsevier; 2016:26(1):40–51.
  • Pecho-Vrieseling E, Rieker C, Fuchs S, et al. Transneuronal propagation of mutant huntingtin contributes to non–cell autonomous pathology in neurons. Nat Neurosci. 2014;17:1064–1072.
  • Stohr J, Watts JC, Mensinger ZL, et al. Purified and synthetic Alzheimer’s amyloid beta (A) prions. Proc Natl Acad Sci. 2012;109:11025–11030.
  • Luk KC, Kehm V, Carroll J, et al. Pathological -synuclein transmission initiates parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–953.
  • Ayers JI, Fromholt S, Koch M, et al. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathologica. 2014;128:791–803.
  • Lundmark K, Westermark GT, Olsen A, et al. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci U S A. 2005;102(17):6098–6102.
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366.
  • Eisele YS, Obermüller U, Heilbronner G, et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science (New York, N.Y.). 2010;330:980–982.
  • Fritschi SK, Langer F, Kaeser SA, et al. Highly potent soluble amyloid-beta seeds in human Alzheimer brain but not cerebrospinal fluid. Brain. 2014;137:2909–2915.
  • Bousset L, Pieri L, Ruiz-Arlandis G, et al. Structural and functional characterization of two alpha-synuclein strains. Nat Commun. 2013;4:2575.
  • Nekooki-Machida Y, Kurosawa M, Nukina N, et al. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proc Natl Acad Sci U S A. 2009;106:9679–9684.
  • Sponarova J, Nystrom SN, Westermark GT. AA-amyloidosis can be transferred by peripheral blood monocytes. Plos One. 2008;3:18–22.
  • Aguilar-Calvo P, García C, Espinosa JC, et al. Prion and prion-like diseases in animals. Virus Res. 2015;207:82–93.
  • Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;112:E5308–5317.
  • Jaunmuktane Z, Mead S, Ellis M, et al. Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature. 2015;525:247–250.
  • Costa DC, De Oliveira GA, Cino EA, et al. Aggregation and prion-like properties of misfolded tumor suppressors: is cancer a prion disease? Cold Spring Harb Perspect Biol. 2016;8(10):a023614.
  • Lasagna-Reeves CA, Clos AL, Castillo-Carranza D, et al. Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochem Biophys Res Commun. 2013;430(3):963–968.
  • Silva JL, De Moura Gallo CV, Costa DC, et al. Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci. 2014;39(6):260–267.
  • Wang G, Fersht AR. Mechanism of initiation of aggregation of p53 revealed by Phi-value analysis. Proc Natl Acad Sci U S A. 2015;112(8):2437–2442.
  • Cino EA, Soares IN, Pedrote MM, et al. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds. Sci Rep. 2016;6:32535.
  • Ano Bom AP, Rangel LP, Costa DC, et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012;287(33):28152–28162.
  • Ishimaru D, Andrade LR, Teixeira LS, et al. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 2003;42(30):9022–9027.
  • Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 2011;7(5):285–295.
  • Soragni A, Janzen DM, Johnson LM, et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 2016;29(1):90–103.
  • Forget KJ, Tremblay G, Roucou X. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53. Plos One. 2013;8(7):e69242.
  • Liebman SW, Chernoff YO. Prions in Yeast. Genetics. 2012;191:1041–1072.
  • Wickner RB, Shewmaker FP, Bateman DA, et al. Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev. 2015;79:1–17.
  • Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 2010;330:629–632.
  • Wickner RB, Edskes HK, Bateman D, et al. Amyloids and yeast prion biology. Biochemistry. 2013;52:1514–1527.
  • Lancaster AK, Bardill JP, True HL, et al. The spontaneous appearance rate of the yeast prion [PSI+] and its implications for the evolution of the evolvability properties of the [PSI+] system. Genetics. 2010;184:393–400.
  • Tessier PM, Lindquist S. Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]. Nat Struct Mol Biol. 2009;16:598–605.
  • Tanaka M, Collins SR, Toyama BH, et al. The physical basis of how prion conformations determine strain phenotypes. Nature. 2006;442:585–589.
  • Alberti S, Halfmann R, King O, et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 2009;137:146–158.
  • Halfmann R, Wright JR, Alberti S, et al. Prion formation by a yeast GLFG nucleoporin. Prion. 2012;6:391–399.
  • Cascarina SM, Ross ED. Yeast prions and human prion-like proteins: sequence features and prediction methods. Cell Mol Life Sci. 2014;71:2047–2063.
  • Halfmann R, Alberti S, Krishnan R, et al. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Molecular Cell. 2011;43:72–84.
  • Toombs JA, Petri M, Paul KR, et al. De novo design of synthetic prion domains. Proc Natl Acad Sci U S A. 2012;109(17):6519–6524.
  • Sabate R, Rousseau F, Schymkowitz J, et al. What makes a protein sequence a prion? Plos Comput Biol. 2015;11:e1004013.
  • Sant’Anna R, Fernandez MR, Batlle C, et al. Characterization of amyloid cores in prion domains. Sci Rep. 2016;6:34274.
  • Romanova NV, Chernoff YO. Hsp104 and prion propagation. Protein Pept Lett. 2009;16(6):598–605.
  • Grimminger V, Richter K, Imhof A, et al. The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem. 2004;279:7378–7383.
  • Wickner RB, Kelly AC. Prions are affected by evolution at two levels. Cell Mol Life Sci. 2016;73(6):1131–1144.
  • Halfmann R, Jarosz DF, Jones SK, et al. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature. 2012;482(7385):363–368.
  • Nakayashiki T, Kurtzman CP, Edskes HK, et al. Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci U S A. 2005;102(30):10575–10580.
  • Wickner RB, Edskes HK, Kryndushkin D, et al. Prion diseases of yeast: amyloid structure and biology. Semin Cell Dev Biol. 2011;22(5):469–475.
  • Wickner RB, Edskes HK, Shewmaker F, et al. Prions of fungi: inherited structures and biological roles. Nat Rev Microbiol. 2007;5(8):611–618.
  • Wickner RB, Shewmaker F, Kryndushkin D, et al. Protein inheritance (prions) based on parallel in-register beta-sheet amyloid structures. Bioessays. 2008;30(10):955–964.
  • Engel A, Shewmaker F, Edskes HK, et al. Amyloid of the Candida albicans Ure2p prion domain is infectious and has an in-register parallel beta-sheet structure. Biochemistry. 2011;50(27):5971–5978.
  • Gorkovskiy A, Thurber KR, Tycko R, et al. Locating folds of the in-register parallel beta-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci U S A. 2014;111(43):E4615–4622.
  • Brown JCS, Lindquist S. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 2009;23:2320–2332.
  • Jarosz DF, Brown JCS, Walker GA, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell. 2014;158:1083–1093.
  • Roberts BT, Wickner RB. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev. 2003;17:2083–2087.
  • Coustou-Linares V, Maddelein ML, Bégueret J, et al. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol. 2001;42:1325–1335.
  • Daskalov A, Habenstein B, Sabate R, et al. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc Natl Acad Sci U S A. 2016;113(10):2720–2725.
  • Balguerie A, Dos Reis S, Ritter C, et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. Embo J. 2003;22(9):2071–2081.
  • Wasmer C, Lange A, van Melckebeke H, et al. Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science. 2008;319(5869):1523–1526.
  • Si K, Choi Y-B, White-Grindley E, et al. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 2010;140:421–435.
  • Si K, Kandel ER. The role of functional prion-like proteins in the persistence of memory. Cold Spring Harb Perspect Biol. 2016;8:a021774.
  • Majumdar A, Cesario WC, White-Grindley E, et al. Critical role of amyloid-like oligomers of drosophila Orb2 in the persistence of memory. Cell. 2012;148:515–529.
  • Hervas R, Li L, Majumdar A, et al. Molecular basis of Orb2 amyloidogenesis and blockade of memory consolidation. Plos Biol. 2016;14(1):e1002361.
  • Xu H, He X, Zheng H, et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife. 2014;3:e01489.
  • Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–737.
  • Hou F, Sun L, Zheng H, et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 2011;146:448–461.
  • Jacobs JL, Coyne CB. Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol. 2013;425:5009–5019.
  • Cai X, Chen J, Xu H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 2014;156:1207–1222.
  • Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci. 2000;97:11910–11915.
  • Harrison PM, Gerstein M. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol. 2003;4:R40.
  • Lancaster AK, Nutter-Upham A, Lindquist S, et al. PLAAC: a web and command-line application to identify proteins with Prion-Like Amino Acid Composition. Bioinformatics. 2014;30:2–3.
  • Zambrano R, Conchillo-Sole O, Iglesias V, et al. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res. 2015;43:W331–W337.
  • Harbi D, Parthiban M, Gendoo D, et al. PrionHome: a database of prions and other sequences relevant to prion phenomena. Plos One. 2012;7:e31785.
  • Espinosa Angarica V, Angulo A, Giner A, et al. PrionScan: an online database of predicted prion domains in complete proteomes. BMC Genomics. 2014;15:102.
  • Espinosa Angarica V, Ventura S, Sancho J. Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics. 2013;14:316.
  • Parry JM, Cox BS. Photoreactivation of ultraviolet induced reciprocal recombination, gene conversion and mutation to prototrophy in Saccharomyces cerevisiae. J Gen Microbiol. 1965;40:235–241.
  • Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol. 1971;106:519–522.
  • Perutz MF. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci. 1999;24:58–63.
  • Li X, Rayman JB, Kandel ER, et al. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton. Molecular Cell. 2014;55:305–318.
  • Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, et al. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol. 2004;22:1302–1306.
  • De Groot NS, Castillo V, Grana-Montes R, et al. AGGRESCAN: method, application, and perspectives for drug design. Methods Mol Biol. 2012;819:199–220.
  • Tartaglia GG, Vendruscolo M. The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev. 2008;37:1395.
  • Bryan AW, Menke M, Cowen LJ, et al. BETASCAN: probable β-amyloids Identified by pairwise probabilistic analysis. Plos Comput Biol. 2009;5:e1000333.
  • Maurer-Stroh S, Debulpaep M, Kuemmerer N, et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods. 2010;7:237–242.
  • Goldschmidt L, Teng PK, Riek R, et al. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci. 2010;107:3487–3492.
  • Ross ED, Toombs JA. The effects of amino acid composition on yeast prion formation and prion domain interactions. Prion. 2010;4:60–65.
  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21(16):3435–3438.
  • Sabate R, Rousseau F, Schymkowitz J, et al. Amyloids or prions? That is the question. Prion. 2015;9(3):200–206.
  • Esteras-Chopo A, Serrano L, De La Paz ML. The amyloid stretch hypothesis: recruiting proteins toward the dark side. Proc Natl Acad Sci. 2005;102:16672–16677.
  • Toombs J, McCarty BR, Ross ED. Compositional determinants of prion formation in yeast. Mol Cell Biol. 2010;30:319–332.
  • Ventura S, Zurdo J, Narayanan S, et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A. 2004;101(19):7258–7263.
  • Ross ED, Baxa U, Wickner RB. Scrambled prion domains form prions and amyloid. Mol Cell Biol. 2004;24(16):7206–7213.
  • Ross ED, Edskes HK, Terry MJ, et al. Primary sequence independence for prion formation. Proc Natl Acad Sci U S A. 2005;102(36):12825–12830.
  • Rousseau F, Serrano L, Schymkowitz JW. How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol. 2006;355(5):1037–1047.
  • Harrison PM. Exhaustive assignment of compositional bias reveals universally prevalent biased regions: analysis of functional associations in human and Drosophila. BMC Bioinformatics. 2006;7:441.
  • Sickmeier M, Hamilton JA, LeGall T, et al. DisProt: the database of disordered proteins. Nucleic Acids Res. 2007;35(Database issue):D786–793.
  • Piovesan D, Tabaro F, Micetic I, et al. DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 2017;45(D1):D1123–D1124.
  • Ashburner M, Ball C, Blake J, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–29.
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 2012;1462:61–80.
  • Han TW, Kato M, Xie S, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell. 2012;149:768–779.
  • Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–767.
  • Wolozin B. Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener. 2012;7:56.
  • Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci. 2011;108:20881–20890.
  • Shaikhibrahim Z, Menon R, Braun M, et al. MED15, encoding a subunit of the mediator complex, is overexpressed at high frequency in castration-resistant prostate cancer. Int J Cancer. 2014;135:19–26.
  • Shaikhibrahim Z, Offermann A, Halbach R, et al. Clinical and molecular implications of MED15 in head and neck squamous cell carcinoma. Am J Pathol. 2015;185:1114–1122.
  • Vieira NM, Naslavsky MS, Licinio L, et al. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G). Hum Mol Genet. 2014;23:4103–4110.
  • Navarro S, Marinelli P, Diaz-Caballero M, et al. The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microb Cell Fact. 2015;14:102.
  • Zhu X, Chen L, Carlsten JOP, et al. Mediator tail subunits can form amyloid-like aggregates in vivo and affect stress response in yeast. Nucleic Acids Res. 2015;43:7306–7314.
  • Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162:1066–1077.
  • Gitler AD, Shorter J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion. 2011;5:179–187.
  • Hennig S, Kong G, Mannen T, et al. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol. 2015;210:529–539.
  • March ZM, King OD, Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res. 2016;210(7):1–14.
  • Kim HJ, Kim NC, Wang Y-D, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495:467–473.
  • Nomura T, Watanabe S, Kaneko K, et al. Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem. 2014;289:1192–1202.
  • Aguzzi A, Altmeyer M. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol. Elsevier; 2016;26(7):547–558.
  • Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15:233–249.
  • Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases-progress and prognosis. Cold Spring Harb Perspect Biol. 2011;3:a004507-a004507.
  • Nott TJ, Petsalaki E, Farber P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Molecular Cell. 2015;57:936–947.
  • Malinovska L, Palm S, Gibson K, et al. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc Natl Acad Sci U S A. 2015;112(20):E2620–E2629.
  • Malinovska L, Alberti S. Protein misfolding in dictyostelium: using a freak of nature to gain insight into a universal problem. Prion. 2015;9:339–346.
  • Singh GP, Chandra BR, Bhattacharya A, et al. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol. 2004;137:307–319.
  • Muralidharan V, Oksman A, Pal P, et al. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun. 2012;3:1310.
  • Chapman MR. Role of escherichia coli curli operons in directing amyloid fiber formation. Science. 2002;295:851–855.
  • Claessen D, Rink R, De Jong W, et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 2003;17:1714–1726.
  • Iglesias V, De Groot NS, Ventura S. Computational analysis of candidate prion-like proteins in bacteria and their role. Front Microbiol. 2015;6:1–13.
  • Pallarès I, Iglesias V, Ventura S. The rho termination factor of clostridium botulinum contains a prion-like domain with a highly amyloidogenic core. Front Microbiol. 2016;6:1–12.
  • Beißbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies with a group of genes. Bioinformatics. 2004;20:1464–1465.
  • Chakrabortee S, Kayatekin C, Newby GA, et al. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci. 2016;113(21):6065–6070.
  • Polymenidou M, Cleveland DW. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med. 2012;209(5):889–893.
  • Newby G, Lindquist S. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol. 2013;23:251–259.
  • Goold R, McKinnon C, Tabrizi SJ. Prion degradation pathways: potential for therapeutic intervention. Mol Cell Neurosci. 2015;66:12–20.
  • Oumata N, Nguyen P, Beringue V, et al. The toll-like receptor agonist imiquimod is active against prions. Plos One. 2013;8:e72112.
  • Schapira AHV, Olanow CW, Greenamyre JT, et al. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet. 2014;384:545–555.
  • Mankar S, Anoop A, Sen S, et al. Nanomaterials: amyloids reflect their brighter side. Nano Rev. 2011;2:6032.
  • Zhou XM, Entwistle A, Zhang H, et al. Self-assembly of amyloid fibrils that display active enzymes. ChemCatChem. 1961-1968;6(7):2014.
  • Scheibel T, Parthasarathy R, Sawicki G, et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci. 2003;100:4527–4532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.