305
Views
7
CrossRef citations to date
0
Altmetric
Review

Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential

, &
Pages 515-528 | Received 25 Jan 2017, Accepted 17 May 2017, Published online: 26 May 2017

References

  • Gelb MH. Protein prenylation, et cetera: signal transduction in two dimensions. Science. 1997;275(5307):1750–1751.
  • Tsuchiya E, Fukui S. Binding of rhodotorucine A, a lipopeptidyl mating hormone, to a cells of Rhodosporidium toruloides for induction of sexual differentiation. Biochem Biophys Res Commun. 1978;85(1):473–479.
  • Wolda SL, Glomset JA. Evidence for modification of lamin B by a product of mevalonic acid. J Biol Chem. 1988;263(13):5997–6000.
  • Casey PJ. Biochemistry of protein prenylation. J Lipid Res. 1992;33(12):1731–1740.
  • Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269.
  • Higgins JB, Casey PJ. The role of prenylation in G-protein assembly and function. Cell Signal. 1996;8(6):433–437.
  • Resh MD. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins. Cell Signal. 1996;8(6):403–412.
  • Parish CA, Rando RR. Isoprenylation/methylation of proteins enhances membrane association by a hydrophobic mechanism. Biochemistry. 1996;35(26):8473–8477.
  • Liang PH, Ko TP, Wang AH. Structure, mechanism and function of prenyltransferases. Eur J Biochem. 2002;269(14):3339–3354.
  • Roskoski R Jr. Protein prenylation: a pivotal posttranslational process. Biochem Biophys Res Commun. 2003;303(1):1–7.
  • Magee T, Seabra MC. Fatty acylation and prenylation of proteins: what’s hot in fat. Curr Opin Cell Biol. 2005;17(2):190–196.
  • Wright LP, Philips MR. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res. 2006;47(5):883–891.
  • Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 2006;47(4):681–699.
  • Leung KF, Baron R, Seabra MC. Thematic review series: lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. J Lipid Res. 2006;47(3):467–475.
  • Nguyen UT, Goody RS, Alexandrov K. Understanding and exploiting protein prenyltransferases. Chembiochem. 2010;11(9):1194–1201.
  • Novelli G, D’Apice MR. Protein farnesylation and disease. J Inherit Metab Dis. 2012;35(5):917–926.
  • Zverina EA, Lamphear CL, Wright EN, et al. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol. 2012;16(5–6):544–552.
  • Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications – more than just a greasy ballast. Proteomics. 2016;16(5):759–782.
  • Kamiya Y, Sakurai A, Takahashi N. Metabolites of mating pheromone, rhodotorucine A, by a cells of Rhodosporidium toruloides. Biochem Biophys Res Commun. 1980;94(3):855–860.
  • Anderegg RJ, Betz R, Carr SA, et al. Structure of Saccharomyces cerevisiae mating hormone a-factor. Identification of S-farnesyl cysteine as a structural component. J Biol Chem. 1988;263(34):18236–18240.
  • Young SG, Yang SH, Davies BS, et al. Targeting protein prenylation in progeria. Sci Transl Med. 2013;5(171):171ps3.
  • Rusinol AE, Sinensky MS. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci. 2006;119(Pt 16):3265–3272.
  • Broers JL, Ramaekers FC, Bonne G, et al. Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev. 2006;86(3):967–1008.
  • Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–298.
  • Yang SH, Bergo MO, Toth JI, et al. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci U S A. 2005;102(29):10291–10296.
  • Yang SH, Andres DA, Spielmann HP, et al. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest. 2008;118(10):3291–3300.
  • Gordon LB, Kleinman ME, Massaro J, et al. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016;134(2):114–125.
  • Gordon LB, Massaro J, D’Agostino RB Sr., et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation. 2014;130(1):27–34.
  • Ibrahim MX, Sayin VI, Akula MK, et al. Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science. 2013;340(6138):1330–1333.
  • Serrano-Pozo A, Frosch MP, Masliah E, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.
  • Li L, Zhang W, Cheng S, et al. Isoprenoids and related pharmacological interventions: potential application in Alzheimer’s disease. Mol Neurobiol. 2012;46(1):64–77.
  • Hottman DA, Li L. Protein prenylation and synaptic plasticity: implications for Alzheimer’s disease. Mol Neurobiol. 2014;50(1):177–185.
  • Pedrini S, Carter TL, Prendergast G, et al. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. Plos Med. 2005;2(1):e18.
  • Cole SL, Grudzien A, Manhart IO, et al. Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem. 2005;280(19):18755–18770.
  • Ostrowski SM, Wilkinson BL, Golde TE, et al. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem. 2007;282(37):26832–26844.
  • Zhou Y, Suram A, Venugopal C, et al. Geranylgeranyl pyrophosphate stimulates gamma-secretase to increase the generation of Abeta and APP-CTFgamma. Faseb J. 2008;22(1):47–54.
  • Grimm MO, Grimm HS, Patzold AJ, et al. Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol. 2005;7(11):1118–1123.
  • Eckert GP, Hooff GP, Strandjord DM, et al. Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis. 2009;35(2):251–257.
  • Gartner U, Holzer M, Arendt T. Elevated expression of p21ras is an early event in Alzheimer’s disease and precedes neurofibrillary degeneration. Neuroscience. 1999;91(1):1–5.
  • Cordle A, Landreth G. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci. 2005;25(2):299–307.
  • Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: II review of human trials and recommendations. Arch Neurol. 2011;68(11):1385–1392.
  • Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol. 2011;68(10):1239–1244.
  • Mans RA, Chowdhury N, Cao D, et al. Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience. 2010;166(2):435–444.
  • Cheng S, Cao D, Hottman DA, et al. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem. 2013;288(50):35952–35960.
  • Kaplan A, Stockwell BR. Therapeutic approaches to preventing cell death in Huntington disease. Prog Neurobiol. 2012;99(3):262–280.
  • Sommer DB, Stacy MA. What’s in the pipeline for the treatment of Parkinson’s disease? Expert Rev Neurother. 2008;8(12):1829–1839.
  • Gagnon KT. HD therapeutics – CHDI Fifth Annual Conference. IDrugs. 2010;13(4):219–223.
  • Rizzetto M, Hepatitis D. Thirty years after. J Hepatol. 2009;50(5):1043–1050.
  • Ciancio A, Rizzetto M. Chronic hepatitis D at a standstill: where do we go from here? Nat Rev Gastroenterol Hepatol. 2014;11(1):68–71.
  • Glenn JS, Watson JA, Havel CM, et al. Identification of a prenylation site in delta virus large antigen. Science. 1992;256(5061):1331–1333.
  • Bordier BB, Ohkanda J, Liu P, et al. In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J Clin Invest. 2003;112(3):407–414.
  • Koh C, Canini L, Dahari H, et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect Dis. 2015;15(10):1167–1174.
  • Amaya M, Baranova A, van Hoek ML. Protein prenylation: a new mode of host-pathogen interaction. Biochem Biophys Res Commun. 2011;416(1–2):1–6.
  • Ivanov SS, Charron G, Hang HC, et al. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem. 2010;285(45):34686–34698.
  • Piispanen AE, Bonnefoi O, Carden S, et al. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. Eukaryot Cell. 2011;10(11):1473–1484.
  • Fortwendel JR, Juvvadi PR, Rogg LE, et al. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. Eukaryot Cell. 2012;11(8):966–977.
  • Song JL, White TC. RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology. 2003;149(Pt 1):249–259.
  • Nakayama H, Ueno K, Uno J, et al. Growth defects resulting from inhibiting ERG20 and RAM2 in Candida glabrata. FEMS Microbiol Lett. 2011;317(1):27–33.
  • Esher SK, Ost KS, Kozubowski L, et al. Relative contributions of prenylation and postprenylation processing in Cryptococcus neoformans pathogenesis. Msphere. 2016;1(2):e00084–00015.
  • Eastman RT, Buckner FS, Yokoyama K, et al. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res. 2006;47(2):233–240.
  • Sharma K. A review on Plasmodium falciparum-protein farnesyltransferase inhibitors as antimalarial drug targets. Curr Drug Targets. 2016;17:1–11.
  • Samatar AA, Poulikakos PI. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov. 2014;13(12):928–942.
  • Winter-Vann AM, Casey PJ. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer. 2005;5(5):405–412.
  • Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17(2):110–122.
  • Cox AD, Fesik SW, Kimmelman AC, et al. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–851.
  • Sousa SF, Fernandes PA, Ramos MJ. Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr Med Chem. 2008;15(15):1478–1492.
  • Khan OM, Ibrahim MX, Jonsson IM, et al. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest. 2011;121(2):628–639.
  • Diao F, Jiang C, Wang XX, et al. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice. Sci Rep. 2016;6:28917.
  • Leite GA, Rosa Jde L, Sanabria M, et al. Delayed reproductive development in pubertal male rats exposed to the hypolipemiant agent rosuvastatin since prepuberty. Reprod Toxicol. 2014;44:93–103.
  • Wang XX, Ying P, Diao F, et al. Altered protein prenylation in Sertoli cells is associated with adult infertility resulting from childhood mumps infection. J Exp Med. 2013;210(8):1559–1574.
  • Roosing S, Collin RW, Den Hollander AI, et al. Prenylation defects in inherited retinal diseases. J Med Genet. 2014;51(3):143–151.
  • Okin D, Medzhitov R. The effect of sustained inflammation on hepatic mevalonate pathway results in hyperglycemia. Cell. 2016;165(2):343–356.
  • Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer. 2011;11(11):775–791.
  • Tate EW, Kalesh KA, Lanyon-Hogg T, et al. Global profiling of protein lipidation using chemical proteomic technologies. Curr Opin Chem Biol. 2015;24:48–57.
  • Suzuki T, Ito M, Ezure T, et al. Protein prenylation in an insect cell-free protein synthesis system and identification of products by mass spectrometry. Proteomics. 2007;7(12):1942–1950.
  • Bhawal RP, Sadananda SC, Bugarin A, et al. Mass spectrometry cleavable strategy for identification and differentiation of prenylated peptides. Anal Chem. 2015;87(4):2178–2186.
  • Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9(20):4632–4641.
  • Thingholm TE, Larsen MR, Ingrell CR, et al. TiO(2)-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J Proteome Res. 2008;7(8):3304–3313.
  • Olsen JV, Blagoev B, Gnad F, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–648.
  • Elortza F, Nuhse TS, Foster LJ, et al. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol Cell Proteomics. 2003;2(12):1261–1270.
  • Yoshihara HA, Mahrus S, Wells JA. Tags for labeling protein N-termini with subtiligase for proteomics. Bioorg Med Chem Lett. 2008;18(22):6000–6003.
  • Wiita AP, Seaman JE, Wells JA. Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini. Methods Enzymol. 2014;544:327–358.
  • Khidekel N, Ficarro SB, Peters EC, et al. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci U S A. 2004;101(36):13132–13137.
  • Berndt N, Sebti SM. Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc. 2011;6(11):1775–1791.
  • Wang C, Gale M Jr., Keller BC, et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell. 2005;18(4):425–434.
  • Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci USA. 2005;102(7):2561–2566.
  • Ye J, Wang C, Sumpter R Jr., et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci U S A. 2003;100(26):15865–15870.
  • Doll S, Burlingame AL. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol. 2015;10(1):63–71.
  • Lai RK, Perez-Sala D, Canada FJ, et al. The gamma subunit of transducin is farnesylated. Proc Natl Acad Sci USA. 1990;87(19):7673–7677.
  • Sorek N, Akerman A, Yalovsky S. Analysis of protein prenylation and S-acylation using gas chromatography-coupled mass spectrometry. Methods Mol Biol. 2013;1043:121–134.
  • Hoffman MD, Kast J. Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins. J Mass Spectrom. 2006;41(2):229–241.
  • Wotske M, Wu Y, Wolters DA. Liquid chromatographic analysis and mass spectrometric identification of farnesylated peptides. Anal Chem. 2012;84(15):6848–6855.
  • Chowdhury SM, Munske GR, Ronald RC, et al. Evaluation of low energy CID and ECD fragmentation behavior of mono-oxidized thio-ether bonds in peptides. J Am Soc Mass Spectrom. 2007;18(3):493–501.
  • Bhawal RP, Shahinuzzaman AD, Chowdhury SM. Gas-phase fragmentation behavior of oxidized prenyl peptides by CID and ETD tandem mass spectrometry. J Am Soc Mass Spectrom. 2017;28(4):704–707.
  • Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–2021.
  • Onono F, Subramanian T, Sunkara M, et al. Efficient use of exogenous isoprenols for protein isoprenylation by MDA-MB-231 cells is regulated independently of the mevalonate pathway. J Biol Chem. 2013;288(38):27444–27455.
  • Onono FO, Morgan MA, Spielmann HP, et al. A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol Cell Proteomics. 2010;9(4):742–751.
  • Chan LN, Hart C, Guo L, et al. A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis. 2009;30(20):3598–3606.
  • Palsuledesai CC, Ochocki JD, Markowski TW, et al. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Mol Biosyst. 2014;10(5):1094–1103.
  • DeGraw AJ, Palsuledesai C, Ochocki JD, et al. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem Biol Drug Des. 2010;76(6):460–471.
  • Palsuledesai CC, Ochocki JD, Kuhns MM, et al. Metabolic labeling with an alkyne-modified isoprenoid analog facilitates imaging and quantification of the prenylome in cells. ACS Chem Biol. 2016;11(10):2820–2828.
  • Kho Y, Kim SC, Jiang C, et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004;101(34):12479–12484.
  • Charron G, Li MM, MacDonald MR, et al. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc Natl Acad Sci U S A. 2013;110(27):11085–11090.
  • Suazo KF, Schaber C, Palsuledesai CC, et al. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep. 2016;6:38615.
  • Storck EM, Serwa RA, Tate EW. Chemical proteomics: a powerful tool for exploring protein lipidation. Biochem Soc Trans. 2013;41(1):56–61.
  • Couvertier SM, Zhou Y, Weerapana E. Chemical-proteomic strategies to investigate cysteine posttranslational modifications. Biochim Biophys Acta. 2014;1844(12):2315–2330.
  • Dursina B, Reents R, Delon C, et al. Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. J Am Chem Soc. 2006;128(9):2822–2835.
  • Nguyen UT, Guo Z, Delon C, et al. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol. 2009;5(4):227–235.
  • Kohnke M, Delon C, Hastie ML, et al. Rab GTPase prenylation hierarchy and its potential role in choroideremia disease. Plos One. 2013;8(12):e81758.
  • Ali N, Jurczyluk J, Shay G, et al. A highly sensitive prenylation assay reveals in vivo effects of bisphosphonate drug on the Rab prenylome of macrophages outside the skeleton. Small Gtpases. 2015;6(4):202–211.
  • Maurer-Stroh S, Koranda M, Benetka W, et al. Towards complete sets of farnesylated and geranylgeranylated proteins. Plos Comput Biol. 2007;3(4):e66.
  • Perez-Sala D. Protein isoprenylation in biology and disease: general overview and perspectives from studies with genetically engineered animals. Front Biosci. 2007;12:4456–4472.
  • Liu M, Sjogren AK, Karlsson C, et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci USA. 2010;107(14):6471–6476.
  • Cook LA, Schey KL, Wilcox MD, et al. Proteomic analysis of bovine brain G protein gamma subunit processing heterogeneity. Mol Cell Proteomics. 2006;5(4):671–685.
  • Kassai H, Satomi Y, Fukada Y, et al. Top-down analysis of protein isoprenylation by electrospray ionization hybrid quadrupole time-of-flight tandem mass spectrometry; the mouse Tgamma protein. Rapid Commun Mass Spectrom. 2005;19(2):269–274.
  • Peng M, Scholten A, Heck AJ, et al. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. J Proteome Res. 2014;13(1):249–259.
  • Venne AS, Kollipara L, Zahedi RP. The next level of complexity: crosstalk of posttranslational modifications. Proteomics. 2014;14(4–5):513–524.
  • Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron. 2005;47(5):709–723.
  • Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron. 2009;64(2):213–226.
  • Komekado H, Yamamoto H, Chiba T, et al. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells. 2007;12(4):521–534.
  • Kong C, Lange JJ, Samovski D, et al. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun. 2013;434(2):388–393.
  • Yount JS, Karssemeijer RA, Hang HC. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem. 2012;287(23):19631–19641.
  • Hansen BT, Davey SW, Ham AJ, et al. P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. J Proteome Res. 2005;4(2):358–368.
  • Chen Y, Chen W, Cobb MH, et al. PTMap – a sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proc Natl Acad Sci USA. 2009;106(3):761–766.
  • Gupta N, Tanner S, Jaitly N, et al. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 2007;17(9):1362–1377.
  • Savitski MM, Nielsen ML, Zubarev RA. ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol Cell Proteomics. 2006;5(5):935–948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.