892
Views
23
CrossRef citations to date
0
Altmetric
Review

Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies

, , , , &
Pages 499-514 | Received 21 Dec 2016, Accepted 26 May 2017, Published online: 12 Jun 2017

References

  • World Health Organization (website). Depression: fact sheet updated [Internet]. [cited Apr 2017]. Available from: http://www.who.int/mediacentre/factsheets/fs369/en/ ​​​​​​
  • Andrade L, Caraveo-Anduaga JJ, Berglund P, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) surveys. Int J Methods Psychiatr Res. 2003;12(1):3–21.
  • Moussavi S, Chatterji S, Verdes E, et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370(9590):851–858.
  • Copeland JRM, Beekman ATF, Braam AW, et al. Depression among older people in Europe: the EURODEP studies. World Psychiatry. 2004;3(1):45–49.
  • Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–162.
  • Belmaker RH, Agam G, Major depressive disorder. N Engl J Med. 2008;358:55–68.
  • Gulbins E, Palmada M, Reichel M, et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med. 2013;19(7):934–938.
  • Jernigan PL, Hoehn RS, Grassme H, et al. Sphingolipids in major depression. NeuroSignals. 2015;23(1):49–58.
  • Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci. 2001;98(22):12320–12322.
  • Mann J. The medical management of depression. N Engl J Med. 2005;353(17):1819–1834.
  • Rush A. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905.
  • Hennings JM, Owashi T, Binder EB, et al. Clinical characteristics and treatment outcome in a representative sample of depressed inpatients – findings from the Munich Antidepressant Response Signature (MARS) project. J Psychiatr Res. 2009;43(3):215–229.
  • Herbert J. Cortisol and depression: three questions for psychiatry. Psychol Med. 2013;43(3):449–469.
  • Merali Z. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABAA receptor subunits in frontal cortical brain region. J Neurosci. 2004;24(6):1478–1485.
  • Berent D, Zboralski K, Orzechowska A, et al. Thyroid hormones association with depression severity and clinical outcome in patients with major depressive disorder. Mol Biol Rep. 2014;41(4):2419–2425.
  • Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–1393.
  • Weissman MM, Wickramaratne P, Gameroff MJ, et al. Offspring of depressed parents: 30 years later. Am J Psychiatry. 2016;173(10):1024–1032. ​​​​​​
  • Koukopoulos A, Sani G. DSM-5 criteria for depression with mixed features: a farewell to mixed depression. Acta Psychiatr Scand. 2014;129(1):4–16.
  • Sharp R. The Hamilton rating scale for depression. Occup Med. 2015;65(4):340–340.
  • Mitchell AJ, Vaze A, Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet. 2009;374(9690):609–619.
  • Le-Niculescu H, Kurian SM, Yehyawi N, et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry. 2009;14(2):156–174.
  • Jin C, Xu W, Yuan J, et al. Meta-analysis of association between the −1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res. 2013;35(1):7–14.
  • Gyekis JP, Yu W, Dong S, et al. No association of genetic variants in BDNF with major depression: a meta- and gene-based analysis. Am J Med Genet Part B Neuropsychiatr Genet. 2013;162(1):61–70.
  • Liu Z, Li X, Sun N, et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One. 2014;9(3):e93388. ​​​​​​
  • Mostafavi S, Battle A, Zhu X, et al. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry. 2014;19(12):1267–1274.
  • Martins-de-Souza D, Harris LW, Guest PC, et al. The role of proteomics in depression research. Eur Arch Psychiatry Clin Neurosci. 2010;260:499–506.
  • Mann M, Kulak NA, Nagaraj N, et al. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49(4):583–590.
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–355.
  • Yamanishi CD, Chiu JH-C, Takayama S. Systems for multiplexing homogeneous immunoassays. Bioanalysis. 2015;7(12):1545–1556.
  • Thompson EJ, Keir G. Laboratory investigation of cerebrospinal fluid proteins. Ann Clin Biochem. 1990;27(5):425–435.
  • Zougman A, Pilch B, Podtelejnikov A, et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res. 2008;7:386–399.
  • Roche S, Gabelle A, Lehmann S. Clinical proteomics of the cerebrospinal fluid: towards the discovery of new biomarkers. Proteomics Clin Appl. 2008;2:428–436.
  • Tumani H, Teunissen C, Süssmuth S, et al. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn. 2008;8(4):479–494.
  • Leistedt SJ, Linkowski P. Brain, networks, depression, and more. Eur Neuropsychopharmacol. 2013;23(1):55–62.
  • Campbell S, Marriott M, Nahmias C, et al. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161(4):598–607.
  • Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201(2):239–243.
  • Fitzgerald PB, Laird AR, Maller J, et al. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29(6):683–695.
  • Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1–2):93–118.
  • Brunner J, Bronisch T, Uhr M, et al. Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters. Eur Arch Psychiatry Clin Neurosci. 2005;255:438–440.
  • Huang T-J, Markus Leweke F, Oxley D, et al. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med. 2006;3:e428.
  • Salton SR, Ferri GL, Hahm S, et al. VGF: a novel role for this neuronal and neuroendocrine polypeptide in the regulation of energy balance. Front Neuroendocrinol. 2000;21(3):199–219.
  • Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Sci Transl Med. 2010;2(20):20ra14.
  • Pasinetti GM, Ungar LH, Lange DJ, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66(8):1218–1222.
  • Rüetschi U, Zetterberg H, Podust VN, et al. Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol. 2005;196(2):273–281.
  • Huang JT, Leweke FM, Tsang TM, et al. CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS One. 2007;2(8):e756.
  • Hendrickson RC, Lee AYH, Song Q, et al. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One. 2015;10(8):1–20.
  • Wang Q, Su X, Jiang X, et al. ITRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience. 2016;330:291–325.
  • Cattaneo A, Sesta A, Calabrese F, et al. The expression of VGF is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment. Neuropsychopharmacology. 2010;35(7):1423–1428.
  • Cattaneo A, Gennarelli M, Uher R, et al. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(10):377–385.
  • Thakker-Varia S, Krol JJ, Nettleton J, et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci. 2007;27(45):12156–12167.
  • Malberg JE, Monteggia LM. VGF, a new player in antidepressant action? Sci Signal. 2008;1(18):pe19.
  • Jakobsson J, Stridsberg M, Zetterberg H, et al. Decreased cerebrospinal fluid secretogranin II concentrations in severe forms of bipolar disorder. J Psychiatry Neurosci. 2013;38(4):E21–E26.
  • Ditzen C, Tang N, Jastorff AM, et al. Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology. 2011;37(10).
  • Mahley RW, Rall SC. APOLIPOPROTEIN E: far more than a lipid transport protein. Annu Rev Genom Hum Genet. 2000;1(1):507–537.
  • Skoog I, Waern M, Duberstein P, et al. A 9-year prospective population-based study on the association between the APOE∗E4 allele and late-life depression in Sweden. Biol Psychiatry. 2015;78(10):730–736.
  • Suzuki K, Iwata Y, Matsuzaki H, et al. Reduced expression of apolipoprotein E receptor type 2 in peripheral blood lymphocytes from patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(6):1007–1010.
  • Evans DA, Rajan KB. APOEε4 and depression: following a winding road. Biol Psychiatry. 2015;78(10):670–671.
  • Urade Y, Hayaishi O. Prostaglandin D 2 and sleep/wake regulation. Sleep Med Rev. 2011;15(6):411–418.
  • Wesseling H, Gottschalk MG, Bahn S. Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders. Int J Neuropsychopharmacol. 2014;18(1):pyu015.
  • Stelzhammer V, Alsaif M, Chan MK, et al. Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res. 2015;60:40–48.
  • Martins-De-Souza D, Guest PC, Vanattou-Saifoudine N, et al. Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci. 2012;262:657–666.
  • Martins-De-Souza D, Guest P, Harris L, et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry. 2012;2:e87.
  • Barbier E, Wang JB. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci. 2009;10:132.
  • Chalovich JM, Eisenberg E. Association of the histidine-triad nucleotide-binding protein-1 (HINT1) gene variants with nicotine dependence KJ. Biophys Chem. 2005;257(5):2432–2437.
  • Gottschalk MG, Wesseling H, Guest PC, et al. Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol. 2015;18(2):1–11.
  • Johnston-Wilson N, Sims C, Hofmann J-P, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol Psychiatry. 2000;5:142–149.
  • Beasley CL, Pennington K, Behan A, et al. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics. 2006;6(11):3414–3425.
  • Lim KH, Dasari AKR, Hung I, et al. Structural changes associated with transthyretin misfolding and amyloid formation revealed by solution and solid-state NMR. Biochemistry. 2016;55(13):1941–1944.
  • Chanoine JP, Alex S, Fang SL, et al. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Endocrinology. 1992;130(2):933–938. ​​​​​​
  • Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res. 2012;2012(6):1–8.
  • Kirkegaard C, Kørner A, Faber J. Increased production of thyroxine and inappropriately elevated serum thyrotropin in levels in endogenous depression. Biol Psychiatry. 1990;27(5):472–476.
  • Park YJ, Lee EJ, Lee YJ, et al. Subclinical hypothyroidism (SCH) is not associated with metabolic derangement, cognitive impairment, depression or poor quality of life (QoL) in elderly subjects. Arch Gerontol Geriatr. 2010;50(3):e68–e73.
  • Engum A, Bjøro T, Mykletun A, et al. Thyroid autoimmunity, depression and anxiety; are there any connections? An epidemiological study of a large population. J Psychosom Res. 2005;59(5):263–268.
  • Sullivan GM, Mann JJ, Oquendo MA, et al. Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol Psychiatry. 2006;60:500–506.
  • Sullivan GM, Hatterer JA, Herbert J, et al. Low levels of transthyretin in the CSF of depressed patients. Am J Psychiatry. 1999;156(5):710–715.
  • Hatterer JA, Herbert J, Hidaka C, et al. CSF transthyretin in patients with depression. Am J Psychiatry. 1993;150(5):813–815. ​​​​​​
  • Mussap M, Plebani M. Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci. 2004;41(5–6):467–550.
  • Levy E. Cystatin C in Alzheimer’s disease. Front. Mol. Neurosci. 2012;5,79: eCollection 2012. ​​​​​​
  • Deng A, Irizarry MC, Nitsch RM, et al. Elevation of cystatin C in susceptible neurons in Alzheimer’s disease. Am J Pathol. 2001;159(3):1061–1068.
  • Minev E, Unruh M, Shlipak MG, et al. Association of cystatin C and depression in healthy elders: the health, aging and body composition study. Nephron Clin Pract. 2010;116(3):c241–c246.
  • Al-Chalabi A, Miller CCJ. Neurofilaments and neurological disease. BioEssays. 2003;25(4):346–355.
  • Weydt P, Oeckl P, Huss A, et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol. 2016;79(1):152–158.
  • Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2015;87(1):12–20.
  • Oeckl P, Jardel C, Salachas F, et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Front Degener. 2016;17(5–6):404–413.
  • Gudmundsson P, Skoog I, Waern M, et al. Is there a CSF biomarker profile related to depression in elderly women? Psychiatry Res. 2010;176(2–3):174–178.
  • Yuan A, Nixon RA. Specialized roles of neurofilament proteins in synapses: relevance to neuropsychiatric disorders. Brain Res Bull. 2016;126:334–346.
  • Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–130.
  • Fatemi SH, Laurence JA, Araghi-Niknam M, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res. 2004;69(2–3):317–323.
  • Altshuler LL, Abulseoud OA, Foland-Ross L, et al. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord. 2010;12(5):541–549.
  • Chandley MJ, Szebeni K, Szebeni A, et al. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci. 2013;38(4):276–284.
  • Torres-Platas SG, Nagy C, Wakid M, et al. Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides. Mol. Psychiatry. 2016; 21(4):509–515.
  • Si X, Miguel-Hidalgo JJ, O’Dwyer G, et al. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology. 2004;29(11):2088–2096.
  • Kern S, Skoog I, Börjesson-Hanson A, et al. Higher CSF interleukin-6 and CSF interleukin-8 in current depression in older women. Results from a population-based sample. Brain Behav Immun. 2014;41:55–58.
  • Sasayama D, Hattori K, Wakabayashi C, et al. Increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and those with major depressive disorder. J Psychiatr Res. 2013;47:401–406.
  • Martinez JM, Garakani A, Yehuda R, et al. Proinflammatory and “resiliency” proteins in the CSF of patients with major depression. Depress Anxiety. 2012;29:32–38.
  • Carpenter LL, Heninger GR, Malison RT, et al. Cerebrospinal fluid interleukin (IL)-6 in unipolar major depression. J Affect Disord. 2004;79(1–3):285–289. ​​​​​​
  • Stübner S, Schön T, Padberg F, et al. Interleukin-6 and the soluble IL-6 receptor are decreased in cerebrospinal fluid of geriatric patients with major depression: no alteration of soluble gp130. Neurosci Lett. 1999;259(3):145–148.
  • Uher T, Bob P. Cerebrospinal fluid S100B levels reflect symptoms of depression in patients with non-inflammatory neurological disorders. Neurosci Lett. 2012;529:139–143.
  • Grabe HJ, Ahrens N, Rose H-J, et al. Neurotrophic factor S100 beta in major depression. Neuropsychobiology. 2001;44:88–90.
  • Schmidt FM, Mergl R, Stach B, et al. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry. 2015;16(2):106–113.
  • Diniz BS, Teixeira AL, Machado-Vieira R, et al. Reduced cerebrospinal fluid levels of brain-derived neurotrophic factor is associated with cognitive impairment in late-life major depression. J Gerontol B Psychol Sci Soc Sci. 2014;69(6):845–851.
  • Hock C, Heese K, Müller-Spahn F, et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry. 2000;5:510–513.
  • Schmidt FM, Arendt E, Steinmetzer A, et al. CSF-hypocretin-1 levels in patients with major depressive disorder compared to healthy controls. Psychiatry Res. 2011;190:240–243.
  • Deuschle M, Schilling C, Leweke FM, et al. Hypocretin in cerebrospinal fluid is positively correlated with Tau and pTau. Neurosci Lett. 2014;561:41–45.
  • Schönknecht P, Pantel J, Kaiser E, et al. Increased tau protein differentiates mild cognitive impairment from geriatric depression and predicts conversion to dementia. Neurosci Lett. 2007;416(1):39–42.
  • Reis T, Brandão CO, Freire Coutinho ES, et al. Cerebrospinal fluid biomarkers in Alzheimer’s disease and geriatric depression: preliminary findings from Brazil. CNS Neurosci Ther. 2012;18(7):524–529.
  • Hattori K, Ota M, Sasayama D, et al. Increased cerebrospinal fluid fibrinogen in major depressive disorder. Sci Rep. 2015;5:11412.
  • Hattori K, Sasayama D, Hidese S, et al. Increased cerebrospinal fluid fibrinogen levels in major depressive disorder replicated in a larger sample set. Eur Neuropsychopharmacol. 2016;26:S403–S404.
  • Gudmundsson P, Skoog I, Waern M, et al. The relationship between cerebrospinal fluid biomarkers and depression in elderly women. Am J Geriatr Psychiatry. 2007;15(10):832–838.
  • Pomara N, Bruno D, Sarreal AS, et al. Lower CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly individuals with major depressive disorder. Am. J. Psychiatry.2012;169(5):523–530. ​​​​​​
  • Westrin Å, Ekman R, Regnéll G, et al. A follow up study of suicide attempters: increase of CSF-somatostatin but no change in CSF-CRH. Eur Neuropsychopharmacol. 2001;11(2):135–143.
  • Banki CM, Karmacsi L, Bissette G, et al. CSF corticotropin-releasing hormone and somatostatin in major depression: response to antidepressant treatment and relapse. Eur Neuropsychopharmacol. 1992;2(2):107–113.
  • Molchan SE, Hill JL, Martinez RA, et al. CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology. 1993;18(7):509–519.
  • Westling S, Ahrén B, Träskman-Bendz L, et al. Low CSF leptin in female suicide attempters with major depression. J Affect Disord. 2004;81(1):41–48.
  • Banki CM, Bissette G, Arato M, et al. CSF corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. Am J Psychiatry. 1987;144(7):873–877.
  • Nemeroff CB, Widerlöv E, Bissette G, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226(4680):1342–1344.
  • Kling MA, Roy A, Doran AR, et al. Cerebrospinal fluid immunoreactivity corticotropin-releasing hormone and adrenocorticotropin secretion in Cushing’s disease and major depression: potential clinical implications. J Clin Endocrinol Metab. 1991;72(2):260–271.
  • Roy A, Pickar D, Paul S, et al. CSF corticotropin-releasing hormone in depressed patients and normal control subjects. Am J Psychiatry. 1987;144(5):641–645.
  • Garakani A, Martinez JM, Yehuda R, et al. Cerebrospinal fluid levels of glutamate and corticotropin releasing hormone in major depression before and after treatment. J Affect Disord. 2013;146(2):262–265.
  • Heuser I, Bissette G, Dettling M, et al. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety. 1998;8:71–79.
  • Nikisch G, Ågren H, Eap CB, et al. Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. Int J Neuropsychopharmacol. 2005;8(3):403–410.
  • Nikisch G, Mathé AA. CSF monoamine metabolites and neuropeptides in depressed patients before and after electroconvulsive therapy. Eur Psychiatry. 2008;23(5):356–359.
  • Heilig M, Zachrisson O, Thorsell A, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res. 2004;38(2):113–121.
  • Widerlöv E, Lindström LH, Wahlestedt C, et al. Neuropeptide Y and peptide YY as possible cerebrospinal fluid markers for major depression and schizophrenia, respectively. J Psychiatr Res. 1988;22(1):69–79.
  • Soleimani L, Oquendo MA, Sullivan GM, et al. Cerebrospinal fluid neuropeptide Y levels in major depression and reported childhood trauma. Int J Neuropsychopharmacol. 2015;18(1):pyu023.
  • Hou C, Jia F, Liu Y, et al. CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res. 2006;1095(1):154–158.
  • Berrettini WH, Doran AR, Kelsoe J, et al. Cerebrospinal fluid neuropeptide Y in depression and schizophrenia. Neuropsychopharmacology. 1987;1(1):81–83.
  • Geracioti TD, Carpenter LL, Owens MJ, et al. Elevated cerebrospinal fluid substance P concentrations in posttraumatic stress disorder and major depression. Am J Psychiatry. 2006;163(4):637–643.
  • Mårtensson B, Nyberg S, Toresson G, et al. Fluoxetine treatment of depression. Acta Psychiatr Scand. 1989;79(6):586–596.
  • Deuschle M, Sander P, Herpfer I, et al. Substance P in serum and cerebrospinal fluid of depressed patients: no effect of antidepressant treatment. Psychiatry Res. 2005;136(1):1–6.
  • Carpenter LL, Bayat L, Moreno F, et al. Decreased cerebrospinal fluid concentrations of substance P in treatment-resistant depression and lack of alteration after acute adjunct vagus nerve stimulation therapy. Psychiatry Res. 2008;157(1–3):123–129.
  • Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–741.
  • Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–457.
  • Hiles SA, Baker AL, de Malmanche T, et al. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–2026.
  • Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254–1266.
  • Li Y, Barger SW, Liu L, et al. S100β induction of the proinflammatory cytokine interleukin-6 in neurons. J Neurochem. 2000;74(1):143–150.
  • Boufidou F, Lambrinoudaki I, Argeitis J, et al. CSF and plasma cytokines at delivery and postpartum mood disturbances. J Affect Disord. 2009;115:287–292.
  • Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7(2):122–133.
  • Chuang D, Power SE, Dunbar PR, Hill AG. Central nervous system interleukin-8 production following neck of femur fracture. ANZ J. Surg. 2005; 75(9):813–816. ​​​​​​
  • Levine J, Barak Y, Chengappa KNR, et al. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology. 1999;40(4):171–176.
  • Arolt V, Peters M, Erfurth A, et al. S100B and response to treatment in major depression: a pilot study. Eur Neuropsychopharmacol. 2003;13(4):235–239.
  • Nishiyama H, Knöpfel T, Endo S, et al. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A. 2002;99(6):4037–4042.
  • Schroeter ML, Abdul-Khaliq H, Krebs M, et al. Serum markers support disease-specific glial pathology in major depression. J Affect Disord. 2008;111(2–3):271–280.
  • Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64:863–870.
  • Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48(8):766–777.
  • Müller K, Elverland A, Romner B, et al. Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med. 2006;44(9):1111–1114.
  • Korgaonkar MS, Fornito A, Williams LM, et al. Abnormal structural networks characterize major depressive disorder – a connectome analysis. Biol Psychiatry. 2014;76(7):567–574.
  • Kempermann G, Kronenberg G. Depressed new Neurons? – adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003;54(5):499–503.
  • Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299–309.
  • Rantamäki T, Castrén E. Expert opinion on therapeutic targets targeting TrkB neurotrophin receptor to treat depression. Expert Opin Ther Targets. 2008;12(6):705–715.
  • Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–75.
  • Birkenhäger TK, Geldermans S, Van Den Broek WW, et al. Serum brain-derived neurotrophic factor level in relation to illness severity and episode duration in patients with major depression. J Psychiatr Res. 2012;46(3):285–289.
  • Blouin AM, Fried I, Wilson CL, et al. Human hypocretin and melanin concentrating hormone levels are linked to emotion and social interaction. Nat. Commun. 2013;4:1547. ​​​​​​
  • Torterolo P, Scorza C, Lagos P, et al. Melanin-concentrating hormone (MCH): role in REM sleep and depression. Front Neurosci. 2015;9(DEC):1–13.
  • Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.
  • Brundin L, Björkqvist M, Petersén Å, et al. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur Neuropsychopharmacol. 2007;17:573–579.
  • Spinazzi R, Andreis PG, Rossi GP, et al. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Clin Exp Med. 2006;58(1):46–57.
  • Schmidt FM, Nowak C, Kratzsch J, et al. Dynamics of melanin-concentrating hormone (MCH) serum levels in major depressive disorder during antidepressant treatment. J Affect Disord. 2015;180:207–213.
  • Kasckow JW, Baker D, Geracioti TD. Corticotropin-releasing hormone in depression and post-traumatic stress disorder. Peptides. 2001;22(5):845–851.
  • Hökfelt T, Pernow B, Wahren J. Substance P: a pioneer amongst neuropeptides. J Int Med. 2001;249(1):27–40.
  • Rimón R, Le Grevés P, Nyberg F, et al. Elevation of substance P-like peptides in the CSF of psychiatric patients. Biol Psychiatry. 1984;19(4):509–516.
  • Reichmann F, Holzer P. Neuropeptide Y: a stressful review. Neuropeptides. 2016;55(1):99–109.
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–198.
  • Tapiola T, Alafuzoff I, Herukka S, et al. Cerebrospinal fluid ␤-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. 2009;66(3):382–389.
  • Ownby RL, Crocco E, Acevedo A, et al. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63(5):530–538.
  • Osorio RS, Gumb T, Pomara N. Soluble amyloid-β levels and late-life depression. Curr Pharm Des. 2014;20(15):2547–2554.
  • Hock C, Golombowski S, Müller-Spahn F, et al. Cerebrospinal fluid levels of amyloid precursor protein and amyloid beta-peptide in Alzheimer’s disease and major depression - inverse correlation with dementia severity. Eur Neurol. 1998;39(2):111–118.
  • Buerger K, Zinkowski R, Teipel SJ, et al. Differentiation of geriatric major depression from Alzheimer’s disease with CSF tau protein phosphorylated at threonine 231. Am J Psychiatry. 2003;160(2):376–379.
  • Martins-de-Souza D, Maccarrone G, Ising M, et al. Plasma fibrinogen: now also an antidepressant response marker? Transl Psychiatry. 2014;4(1):e352.
  • Maccarrone G, Ditzen C, Yassouridis A, et al. Psychiatric patient stratification using biosignatures based on cerebrospinal fluid protein expression clusters. J Psychiatr Res. 2013;47:1572–1580.
  • Yin GN, Lee HW, Cho J-Y, et al. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 2009;1265:158–170.
  • Zaidi A. Plasma membrane Ca-ATPases: targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem. 2010;1(9):271–280.
  • Szegő ÉM, Janáky T, Szabó Z, et al. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome. Eur Neuropsychopharmacol. 2010;20(2):96–111.
  • Henningsen K, Palmfeldt J, Christiansen S, et al. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression. Mol Cell Proteomics. 2012;11(7):M111.016428.
  • Kim S, Webster MJ. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry. 2010;16(4):452–461.
  • Nilsson A, Stroth N, Zhang X, et al. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology. 2012;62(1):347–357.
  • Jiang Y, Jakovcevski M, Bharadwaj R, et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression  of the NMDA receptor subunit NR2B. J. Neurosci. 2010;30(21):7152–7167. ​​​​​​
  • Okerlund ND, Cheyette BNR. Synaptic Wnt signaling-a contributor to major psychiatric disorders? J Neurodev Disord. 2011;3(2):162–174.
  • Kato T. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci. 2007;61(1):3–19.
  • McCurdy RD, Féron F, Perry C, et al. Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res. 2006;82(2–3):163–173.
  • Takahashi N, Sakurai T, Bozdagi-Gunal O, et al. Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl Psychiatry. 2011;1(5):e8.
  • Xu C, Mullersman JE, Wang L, et al. Polymorphisms in seizure 6-like gene are associated with bipolar disorder I: evidence of gene×gender interaction. J Affect Disord. 2013;145(1):95–99.
  • Fullerton JM, Tiwari Y, Agahi G, et al. Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar Disord. 2010;12(5):550–556.
  • Rask-Andersen M, Olszewski PK, Levine AS, et al. Molecular mechanisms underlying anorexia nervosa: focus on human gene association studies and systems controlling food intake. Brain Res Rev. 2010;62(2):147–164.
  • Garcı́a-Sevilla JA, Walzer C, Busquets X, et al. Density of guanine nucleotide-binding proteins in platelets of patients with major depression: increased abundance of the Gαi2 subunit and down-regulation by antidepressant drug treatment. Biol Psychiatry. 1997;42(8):704–712.
  • Oeckl P, Steinacker P, Feneberg E, et al. Neurochemical biomarkers in the diagnosis of frontotemporal lobar degeneration: an update. J Neurochem. 2016;138:184–192.
  • Simpson RJ, Lim JW, Moritz RL, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.