735
Views
59
CrossRef citations to date
0
Altmetric
Review

Middle-down proteomics: a still unexploited resource for chromatin biology

&
Pages 617-626 | Received 25 Feb 2017, Accepted 20 Jun 2017, Published online: 28 Jun 2017

References

  • Xu D, Bai J, Duan Q, et al. Covalent modifications of histones during mitosis and meiosis. Cell Cycle. 2009;8(22):3688–3694.
  • Weber CM, Henikoff S. Histone variants: dynamic punctuation in transcription. Genes Dev. 2014;28(7):672–682.
  • Kumar R, Horikoshi N, Singh M, et al. Chromatin modifications and the DNA damage response to ionizing radiation. Front Oncol. 2012;2:214.
  • Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–357.
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–1068.
  • Chi P, Allis CD, Wang GG. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer. 2010;10(7):457–469.
  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–1080.
  • Taverna SD, Li H, Ruthenburg AJ, et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–1040.
  • Yun MY, Wu J, Workman JL, et al. Readers of histone modifications. Cell Res. 2011;21(4):564–578.
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.
  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Developmental Cell. 2003;4(4):497–508.
  • Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18(2):90–101.
  • Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003;15(2):172–183.
  • Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell. 2010;142(5):682–685.
  • Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–21936.
  • Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature. 2005;438(7071):1176–1180.
  • Xhemalce B, Kouzarides T. A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes Dev. 2010;24(7):647–652.
  • Vermeulen M, Eberl HC, Matarese F, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010;142(6):967–980.
  • Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol. 2015;7(9):a025064.
  • Yuan W, Xu M, Huang C, et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem. 2011;286(10):7983–7989.
  • Chandra T, Kirschner K, Thuret JY, et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell. 2012;47(2):203–214.
  • Shema E, Jones D, Shoresh N, et al. Single-molecule decoding of combinatorially modified nucleosomes. Science. 2016;352(6286):717–721.
  • Egelhofer TA, Minoda A, Klugman S, et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 2011;18(1):91–93.
  • Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J Cell Biol. 2010;190(4):491–500.
  • Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics. 2012;75(12):3419–3433.
  • Sidoli S, Bhanu NV, Karch KR, et al. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J Vis Exp. 2016;(111). doi: 10.3791/54112.
  • Bonaldi T, Imhof A, Regula JT. A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics. 2004;4(5):1382–1396.
  • Garcia BA, Mollah S, Ueberheide BM, et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc. 2007;2(4):933–938.
  • Liao R, Wu H, Deng H, et al. Specific and efficient N-propionylation of histones with propionic acid N-hydroxysuccinimide ester for histone marks characterization by LC-MS. Anal Chem. 2013;85(4):2253–2259.
  • Maile TM, Izrael-Tomasevic A, Cheung T, et al. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol Cell Proteomics. 2015;14(4):1148–1158.
  • Kelleher NL. Top-down proteomics. Anal Chem. 2004;76(11):197A–203A.
  • Loo JA, Edmonds CG, Smith RD. Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science. 1990;248(4952):201–204.
  • Zubarev RAK, McLafferty NL, Electron Capture FW. Dissociation of multiply charged protein cations. a nonergodic process. J Am Chem Soc. 1998;120:3265–3266.
  • Syka JE, Coon JJ, Schroeder MJ, et al. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101(26):9528–9533.
  • Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: a bird’s eye view. J Proteome Res. 2006;5(2):240–247.
  • Boyne MT 2nd, Pesavento JJ, Mizzen CA, et al. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J Proteome Res. 2006;5(2):248–253.
  • Siuti N, Roth MJ, Mizzen CA, et al. Gene-specific characterization of human histone H2B by electron capture dissociation. J Proteome Res. 2006;5(2):233–239.
  • Pesavento JJ, Mizzen CA, Kelleher NL. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal Chem. 2006;78(13):4271–4280.
  • Banks GC, Deterding LJ, Tomer KB, et al. Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem. 2001;276(39):36467–36473.
  • Sarg B, Faserl K, Kremser L, et al. Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics. 2013;12(9):2640–2656.
  • Onder O, Sidoli S, Carroll M, et al. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics. 2015;12(5):499–517.
  • Taverna SD, Ueberheide BM, Liu Y, et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A. 2007;104(7):2086–2091.
  • Mikesh LM, Ueberheide B, Chi A, et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta. 2006;1764(12):1811–1822.
  • Good DM, Wirtala M, McAlister GC, et al. Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics. 2007;6(11):1942–1951.
  • Young NL, DiMaggio PA, Plazas-Mayorca MD, et al. High throughput characterization of combinatorial histone codes. Mol Cell Proteomics. 2009;8(10):2266–2284.
  • Tian Z, Tolic N, Zhao R, et al. Enhanced top-down characterization of histone post-translational modifications. Genome Biol. 2012;13(10):R86.
  • DiMaggio PA Jr., Young NL, Baliban RC, et al. A mixed integer linear optimization framework for the identification and quantification of targeted post-translational modifications of highly modified proteins using multiplexed electron transfer dissociation tandem mass spectrometry. Mol Cell Proteomics. 2009;8(11):2527–2543.
  • Sidoli S, Schwammle V, Ruminowicz C, et al. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics. 2014;14(19):2200–2211.
  • LeDuc RD, Taylor GK, Kim YB, et al. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. 2004;32(Web Server issue):W340–345.
  • Zamdborg L, LeDuc RD, Glowacz KJ, et al. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 2007;35(Web Server issue):W701–706.
  • Karabacak NM, Li L, Tiwari A, et al. Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol Cell Proteomics. 2009;8(4):846–856.
  • Frank AM, Pesavento JJ, Mizzen CA, et al. Interpreting top-down mass spectra using spectral alignment. Anal Chem. 2008;80(7):2499–2505.
  • Shechter D, Dormann HL, Allis CD, et al. Extraction, purification and analysis of histones. Nat Protoc. 2007;2(6):1445–1457.
  • Sidoli S, Garcia BA. Characterization of individual histone posttranslational modifications and their combinatorial patterns by mass spectrometry-based proteomics strategies. Methods Mol Biol. 2017;1528:121–148.
  • Kalli A, Sweredoski MJ, Hess S. Data-dependent middle-down nano-liquid chromatography-electron capture dissociation-tandem mass spectrometry: an application for the analysis of unfractionated histones. Anal Chem. 2013;85(7):3501–3507.
  • Liao R, Zheng D, Nie A, et al. Sensitive and precise characterization of combinatorial histone modifications by selective derivatization coupled with RPLC-EThcD-MS/MS. J Proteome Res. 2017;16:780–787.
  • Sweredoski MJ, Moradian A, Raedle M, et al. High resolution parallel reaction monitoring with electron transfer dissociation for middle-down proteomics. Anal Chem. 2015;87(16):8360–8366.
  • Horn DM, Zubarev RA, McLafferty FW. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom. 2000;11(4):320–332.
  • Liu X, Inbar Y, Dorrestein PC, et al. Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol Cell Proteomics. 2010;9(12):2772–2782.
  • Aggarwal S, Yadav AK. False discovery rate estimation in proteomics. Methods Mol Biol. 2016;1362:119–128.
  • LeDuc RD, Fellers RT, Early BP, et al. The C-score: a Bayesian framework to sharply improve proteoform scoring in high-throughput top down proteomics. J Proteome Res. 2014;13(7):3231–3240.
  • Software for middle-down Proteomics [Internet]. Simone Sidoli; [cited 2017 June 19]. Available from: http://middle-down.github.io/Software/
  • Jung HR, Sidoli S, Haldbo S, et al. Precision mapping of coexisting modifications in histone H3 tails from embryonic stem cells by ETD-MS/MS. Anal Chem. 2013;85(17):8232–8239.
  • Schwammle V, Aspalter CM, Sidoli S, et al. Large scale analysis of co-existing post-translational modifications in histone tails reveals global fine structure of cross-talk. Mol Cell Proteomics. 2014;13(7):1855–1865.
  • Shortreed MR, Frey BL, Scalf M, et al. Elucidating proteoform families from proteoform intact-mass and lysine-count measurements. J Proteome Res. 2016;15(4):1213–1221.
  • Guan X, Rastogi N, Parthun MR, et al. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics. 2013;12(8):2048–2059.
  • Zhang K, Williams KE, Huang L, et al. Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry. Mol Cell Proteomics. 2002;1(7):500–508.
  • Gonzales-Cope M, Sidoli S, Bhanu NV, et al. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 2016;17:95.
  • Schwammle V, Sidoli S, Ruminowicz C, et al. Systems level analysis of histone H3 Post-translational modifications (PTMs) reveals features of PTM crosstalk in chromatin regulation. Mol Cell Proteomics. 2016;15(8):2715–2729.
  • Wang Z, Zang C, Rosenfeld JA, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40(7):897–903.
  • Voigt P, LeRoy G, Drury WJ 3rd, et al. Asymmetrically modified nucleosomes. Cell. 2012;151(1):181–193.
  • Lex A, Gehlenborg N, Strobelt H, et al. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20(12):1983–1992.
  • Nardelli SC, Che FY, Silmon De Monerri NC, et al. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. Mbio. 2013;4(6):e00922–00913.
  • Sidoli S, Vandamme J, Salcini AE, et al. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics. Proteomics. 2016;16(3):459–464.
  • Jamieson K, Wiles ET, McNaught KJ, et al. Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res. 2016;26(1):97–107.
  • Tvardovskiy A, Wrzesinski K, Sidoli S, et al. Top-down and middle-down protein analysis reveals that intact and clipped human histones differ in post-translational modification patterns. Mol Cell Proteomics. 2015;14(12):3142–3153.
  • Zheng Y, Huang X, Kelleher NL. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol. 2016;33:142–150.
  • Sidoli S, Lin S, Karch KR, et al. Bottom-up and middle-down proteomics have comparable accuracies in defining histone post-translational modification relative abundance and stoichiometry. Anal Chem. 2015;87(6):3129–3133.
  • Vandamme J, Sidoli S, Mariani L, et al. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res. 2015;43(20):9694–9710.
  • Shvartsburg AA, Zheng Y, Smith RD, et al. Separation of variant methylated histone tails by differential ion mobility. Anal Chem. 2012;84(15):6317–6320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.