239
Views
5
CrossRef citations to date
0
Altmetric
Review

Unravelling the biology of chromatin in health and cancer using proteomic approaches

, , &
Pages 905-915 | Received 31 May 2017, Accepted 30 Aug 2017, Published online: 20 Sep 2017

References

  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016 Aug;17(8):487–500. PubMed PMID: 27346641. DOI:10.1038/nrg.2016.59
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007 Feb 23;128(4):707–719. PubMed PMID: 17320508; eng. DOI:10.1016/j.cell.2007.01.015
  • Dawson MA. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science. 2017 Mar 17;355(6330):1147–1152. PubMed PMID: 28302822; eng. DOI:10.1126/science.aam7304
  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013 Oct 17;502(7471):333–339. PubMed PMID: 24132290; PubMed Central PMCID: PMC3927368. eng. DOI:10.1038/nature12634
  • Bantscheff M, Hopf C, Savitski MM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011 Mar;29(3):255–265. PubMed PMID: 21258344; eng.
  • Becher I, Dittmann A, Savitski MM, et al. Chemoproteomics reveals time-dependent binding of histone deacetylase inhibitors to endogenous repressor complexes. ACS Chem Biol. 2014 Aug 15;9(8):1736–1746. PubMed PMID: 24877719; eng. DOI:10.1021/cb500235n
  • Sardiu ME, Smith KT, Groppe BD, et al. Suberoylanilide hydroxamic acid (SAHA)-induced dynamics of a human histone deacetylase protein interaction network. Mol Cell Proteomics. 2014 Nov;13(11):3114–3125. PubMed PMID: 25073741; PubMed Central PMCID: PMCPMC4223495. DOI:10.1074/mcp.M113.037127
  • Smith KT, Martin-Brown SA, Florens L, et al. Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol. 2010 Jan 29;17(1):65–74. PubMed PMID: 20142042; PubMed Central PMCID: PMC2819981. eng. DOI:10.1016/j.chembiol.2009.12.010
  • Mackmull MT, Iskar M, Parca L, et al. Histone Deacetylase Inhibitors (HDACi) cause the selective depletion of Bromodomain Containing Proteins (BCPs). Mol Cell Proteomics. 2015 May;14(5):1350–1360. PubMed PMID: 25755299; PubMed Central PMCID: PMC4424404. eng.
  • Wu Q, Cheng Z, Zhu J, et al. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line. Sci Rep. 2015 Mar 31;5:9520. PubMed PMID: 25825284; PubMed Central PMCID: PMCPMC4379480. DOI:10.1038/srep09520
  • Kurimchak AM, Shelton C, Duncan KE, et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep. 2016 Aug 02;16(5):1273–1286. PubMed PMID: 27452461; PubMed Central PMCID: PMC4972668. eng. DOI:10.1016/j.celrep.2016.06.091
  • Sen P, Luo J, Hada A, et al. Loss of Snf5 induces formation of an aberrant SWI/SNF complex. Cell Rep. 2017 Feb 28;18(9):2135–2147. PubMed PMID: 28249160. DOI:10.1016/j.celrep.2017.02.017
  • Dutta A, Sardiu M, Gogol M, et al. Composition and function of mutant Swi/Snf complexes. Cell Rep. 2017 Feb 28;18(9):2124–2134. PubMed PMID: 28249159. DOI:10.1016/j.celrep.2017.01.058
  • Herz HM, Mohan M, Garrett AS, et al. Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila. Mol Cell Biol. 2012 May;32(9):1683–1693. PubMed PMID: 22354997; PubMed Central PMCID: PMC3347239. eng. DOI:10.1128/MCB.06503-11
  • Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics. 2016 Mar;8(3):429–445. PubMed PMID: 26606673; eng. DOI:10.2217/epi.15.108
  • Wierer M, Mann M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet. 2016 Oct 01;25(R2):R106–R114. PubMed PMID: 27402878; PubMed Central PMCID: PMC5036873. eng. DOI:10.1093/hmg/ddw208
  • Lewis PW, Muller MM, Koletsky MS, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013 May 17;340(6134):857–861. PubMed PMID: 23539183; PubMed Central PMCID: PMCPMC3951439. DOI:10.1126/science.1232245
  • Koch L. Cancer genetics: oncohistone pathology explained. Nat Rev Genet. 2016 Jul;17(7):375. PubMed PMID: 27211066; eng. DOI:10.1038/nrg.2016.71
  • Zheng Y, Huang X, Kelleher NL. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol. 2016 Aug;33:142–150. PubMed PMID: 27371874; PubMed Central PMCID: PMCPMC5129744. DOI:10.1016/j.cbpa.2016.06.007
  • Janssen KA, Sidoli S, Garcia BA. Recent achievements in characterizing the histone code and approaches to integrating epigenomics and systems biology. Methods Enzymol. 2017;586:359–378. PubMed PMID: 28137571. DOI:10.1016/bs.mie.2016.10.021
  • Abmayr SM, Yao T, Parmely T, et al. Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr Protoc Mol Biol. 2006 Aug; Chapter 12:Unit12 1. PubMed PMID: 18265374. DOI:10.1002/0471142727.mb1201s75
  • Vermeulen M, Eberl HC, Matarese F, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010 Sep 17;142(6):967–980. PubMed PMID: 20850016. DOI:10.1016/j.cell.2010.08.020
  • Eberl HC, Spruijt CG, Kelstrup CD, et al. A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell. 2013 Jan 24;49(2):368–378. PubMed PMID: 23201125. DOI:10.1016/j.molcel.2012.10.026
  • Bartke T, Vermeulen M, Xhemalce B, et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010 Oct 29;143(3):470–484. PubMed PMID: 21029866; PubMed Central PMCID: PMCPMC3640253. DOI:10.1016/j.cell.2010.10.012
  • Lambert JP, Mitchell L, Rudner A, et al. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics. 2009 Apr;8(4):870–882. PubMed PMID: 19106085; PubMed Central PMCID: PMCPMC2667365. DOI:10.1074/mcp.M800447-MCP200
  • Soldi M, Bonaldi T. The ChroP approach combines ChIP and mass spectrometry to dissect locus-specific proteomic landscapes of chromatin. J Vis Exp. 2014 Apr 11:86 PubMed PMID: 24747196; PubMed Central PMCID: PMCPMC4166860. DOI:10.3791/51220.
  • Mohammed H, Taylor C, Brown GD, et al. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc. 2016 Feb;11(2):316–326. PubMed PMID: 26797456. DOI:10.1038/nprot.2016.020
  • Rafiee MR, Girardot C, Sigismondo G, et al. Expanding the circuitry of pluripotency by selective isolation of chromatin-associated proteins. Mol Cell. 2016 Nov 03;64(3):624–635. PubMed PMID: 27773674; PubMed Central PMCID: PMCPMC5101186. DOI:10.1016/j.molcel.2016.09.019
  • Wang CI, Alekseyenko AA, LeRoy G, et al. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol. 2013 Feb;20(2):202–209. PubMed PMID: 23295261; PubMed Central PMCID: PMCPMC3674866. DOI:10.1038/nsmb.2477
  • Zee BM, Alekseyenko AA, McElroy KA, et al. Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry. Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1784–1789. PubMed PMID: 26831069; PubMed Central PMCID: PMCPMC4763777. DOI:10.1073/pnas.1522750113
  • Byrum SD, Raman A, Taverna SD, et al. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2012 Jul 26;2(1):198–205. PubMed PMID: 22840409; PubMed Central PMCID: PMCPMC3408609. DOI:10.1016/j.celrep.2012.06.019
  • Waldrip ZJ, Byrum SD, Storey AJ, et al. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics. 2014 Sep;9(9):1207–1211. PubMed PMID: 25147920; PubMed Central PMCID: PMCPMC4169012. DOI:10.4161/epi.29919
  • Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009 Jan 09;136(1):175–186. PubMed PMID: 19135898; PubMed Central PMCID: PMCPMC3395431.DOI:10.1016/j.cell.2008.11.045
  • Kliszczak AE, Rainey MD, Harhen B, et al. DNA mediated chromatin pull-down for the study of chromatin replication. Sci Rep. 2011;1:95. PubMed PMID: 22355613; PubMed Central PMCID: PMCPMC3216581. DOI:10.1038/srep00095
  • Alabert C, Bukowski-Wills JC, Lee SB, et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol. 2014 Mar;16(3):281–293. PubMed PMID: 24561620; PubMed Central PMCID: PMCPMC4283098. DOI:10.1038/ncb2918
  • Leitner A, Faini M, Stengel F, et al. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem Sci. 2016 Jan;41(1):20–32. PubMed PMID: 26654279. DOI:10.1016/j.tibs.2015.10.008
  • Liu F, Rijkers DT, Post H, et al. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods. 2015 Dec;12(12):1179–1184. PubMed PMID: 26414014; eng. DOI:10.1038/nmeth.3603
  • Kramer K, Sachsenberg T, Beckmann BM, et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods. 2014 Oct;11(10):1064–1070. PubMed PMID: 25173706; eng. DOI:10.1038/nmeth.3092
  • Leitner A, Walzthoeni T, Aebersold R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat Protoc. 2014 Jan;9(1):120–137. PubMed PMID: 24356771; eng. DOI:10.1038/nprot.2013.168
  • Li X, Li XD. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr Opin Chem Biol. 2015 Feb;24:80–90. PubMed PMID: 25461726; eng. DOI:10.1016/j.cbpa.2014.10.015
  • Nguyen VQ, Ranjan A, Stengel F, et al. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell. 2013 Sep 12;154(6):1220–1231. PubMed PMID: 24034246; PubMed Central PMCID: PMC3776929. eng. DOI:10.1016/j.cell.2013.08.018
  • Tosi A, Haas C, Herzog F, et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell. 2013 Sep 12;154(6):1207–1219. PubMed PMID: 24034245; eng. DOI:10.1016/j.cell.2013.08.016
  • Ciferri C, Lander GC, Maiolica A, et al. Molecular architecture of human polycomb repressive complex 2. eLife. 2012 Oct 30;1:e00005. PubMed PMID: 23110252; PubMed Central PMCID: PMC3482686. eng. DOI:10.7554/eLife.00005
  • Kim D, Setiaputra D, Jung T, et al. Molecular architecture of yeast chromatin assembly factor 1. Sci Rep. 2016 May 25;6:26702. PubMed PMID: 27221973; PubMed Central PMCID: PMC4879628. eng. DOI:10.1038/srep26702
  • Kloet SL, Baymaz HI, Makowski M, et al. Towards elucidating the stability, dynamics and architecture of the nucleosome remodeling and deacetylase complex by using quantitative interaction proteomics. Febs J. 2015 May;282(9):1774–1785. PubMed PMID: 25123934.
  • Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002 May;1(5):376–386. PubMed PMID: 12118079; eng.
  • Jakobsen L, Schroder JM, Larsen KM, et al. Centrosome isolation and analysis by mass spectrometry-based proteomics. Methods Enzymol. 2013;525:371–393. PubMed PMID: 23522479; eng. DOI:10.1016/B978-0-12-397944-5.00018-3
  • Grolimund L, Aeby E, Hamelin R, et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat Commun. 2013;4:2848. PubMed PMID: 24270157; eng. DOI:10.1038/ncomms3848
  • Kustatscher G, Wills KL, Furlan C, et al. Chromatin enrichment for proteomics. Nat Protoc. 2014 Sep;9(9):2090–2099. PubMed PMID: 25101823; PubMed Central PMCID: PMCPMC4300392. DOI:10.1038/nprot.2014.142
  • Mews P, Zee BM, Liu S, et al. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol. 2014 Nov;34(21):3968–3980. PubMed PMID: 25154414; PubMed Central PMCID: PMCPMC4386454. DOI:10.1128/MCB.00763-14
  • Mews P, Berger SL. Exploring the dynamic relationship between cellular metabolism and chromatin structure using SILAC-mass spec and ChIP-sequencing. Methods Enzymol. 2016;574:311–329. PubMed PMID: 27423866. DOI:10.1016/bs.mie.2016.04.002
  • Cuomo A, Soldi M, Bonaldi T. SILAC-based quantitative strategies for accurate histone posttranslational modification profiling across multiple biological samples. Methods Mol Biol. 2017;1528:97–119. PubMed PMID: 27854018; eng. DOI:10.1007/978-1-4939-6630-1_7
  • Hauer MH, Seeber A, Singh V, et al. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol. 2017 Feb;24(2):99–107. PubMed PMID: 28067915. DOI:10.1038/nsmb.3347
  • Zhang Y, Wen Z, Washburn MP, et al. Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance. Anal Chem. 2015;87(9):4749–4756. PubMed PMID: 25839423; eng. DOI:10.1021/ac504740p
  • Sardiu ME, Cai Y, Jin J, et al. Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A. 2008 Feb 05;105(5):1454–1459. PubMed PMID: 18218781; PubMed Central PMCID: PMCPMC2234165. DOI:10.1073/pnas.0706983105
  • Joshi P, Greco TM, Guise AJ, et al. The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol. 2013;9:672. PubMed PMID: 23752268; PubMed Central PMCID: PMC3964310. eng. DOI:10.1038/msb.2013.26
  • Hauri S, Comoglio F, Seimiya M, et al. A high-density map for navigating the human polycomb complexome. Cell Rep. 2016 Oct 04;17(2):583–595. PubMed PMID: 27705803; eng. DOI:10.1016/j.celrep.2016.08.096
  • Kloet SL, Makowski MM, Baymaz HI, et al. The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol. 2016 Jul;23(7):682–690. PubMed PMID: 27294783; PubMed Central PMCID: PMC4939079. eng. DOI:10.1038/nsmb.3248
  • Oliviero G, Brien GL, Waston A, et al. Dynamic protein interactions of the polycomb repressive complex 2 during differentiation of pluripotent cells. Mol Cell Proteomics. 2016 Nov;15(11):3450–3460. PubMed PMID: 27634302; PubMed Central PMCID: PMC5098042. eng. DOI:10.1074/mcp.M116.062240
  • Waldron L, Steimle JD, Greco TM, et al. The cardiac TBX5 interactome reveals a chromatin remodeling network essential for cardiac septation. Dev Cell. 2016 Feb 08;36(3):262–275. PubMed PMID: 26859351; PubMed Central PMCID: PMC4920128. eng. DOI:10.1016/j.devcel.2016.01.009
  • Smits AH, Jansen PW, Poser I, et al. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res. 2013 Jan 07;41(1):e28. PubMed PMID: 23066101; PubMed Central PMCID: PMCPMC3592467. DOI:10.1093/nar/gks941
  • Gilmore JM, Sardiu ME, Groppe BD, et al. WDR76 Co-localizes with heterochromatin related proteins and rapidly responds to DNA damage. PloS One. 2016;11(6):e0155492. PubMed PMID: 27248496; PubMed Central PMCID: PMC4889050. eng. DOI:10.1371/journal.pone.0155492
  • Weems JC, Slaughter BD, Unruh JR, et al. Assembly of the Elongin A ubiquitin ligase is regulated by genotoxic and other stresses. J Biol Chem. 2015 Jun 12;290(24):15030–15041. PubMed PMID: 25878247; PubMed Central PMCID: PMCPMC4463447. DOI:10.1074/jbc.M114.632794
  • Saraf A, Cervantes S, Bunnik EM, et al. Dynamic and combinatorial landscape of histone modifications during the intraerythrocytic developmental cycle of the malaria parasite. J Proteome Res. 2016 Aug 05;15(8):2787–2801. PubMed PMID: 27291344; eng. DOI:10.1021/acs.jproteome.6b00366
  • Choi H, Kim S, Fermin D, et al. QPROT: statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics. J Proteomics. 2015 Nov 03:129:121-6. PubMed PMID: 26254008; PubMed Central PMCID: PMCPMC4630079. DOI: 10.1016/j.jprot.2015.07.036
  • Pavelka N, Pelizzola M, Vizzardelli C, et al. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004 Dec 17:5:203. PubMed PMID: 15606915; PubMed Central PMCID: PMCPMC545082. DOI: 10.1186/1471-2105-5-203
  • Sowa ME, Bennett EJ, Gygi SP, et al. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009 Jul 23;138(2):389–403. PubMed PMID: 19615732; PubMed Central PMCID: PMCPMC2716422. DOI:10.1016/j.cell.2009.04.042
  • Zhang Y, Wen Z, Washburn MP, et al. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 2010 Mar 15;82(6):2272–2281. PubMed PMID: 20166708. DOI:10.1021/ac9023999
  • Choi H, Larsen B, Lin ZY, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods. 2011 Jan;8(1):70–73. PubMed PMID: 21131968; PubMed Central PMCID: PMCPMC3064265. DOI:10.1038/nmeth.1541
  • Choi H, Liu G, Mellacheruvu D, et al. Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT. Curr Protoc Bioinformatics. 2012 Sep;Chapter 8:Unit815. PubMed PMID: 22948729; PubMed Central PMCID: PMCPMC3446209. DOI:10.1002/0471250953.bi0815s39
  • Nesvizhskii AI. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics. 2012 May;12(10):1639–1655. PubMed PMID: 22611043; PubMed Central PMCID: PMCPMC3744239. DOI:10.1002/pmic.201100537
  • Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteomics. 2015 Nov 03;129:83–92. DOI:10.1016/j.jprot.2015.07.012
  • Ma’ayan A, MacArthur BD. New frontiers of network analysis in systems biology. Dordrecht; New York: Springer; 2012.
  • Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. New York, NY: Wiley; 1990. ( (Wiley series in probability and mathematical statistics Applied probability and statistics,)).
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 Jan;43(Databaseissue):D447–52. PubMed PMID: 25352553; PubMed Central PMCID: PMC4383874. eng. DOI:10.1093/nar/gku1003
  • Zhang C, Gao S, Molascon AJ, et al. Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features. J Proteome Res. 2014 Jul 03;13(7):3330–3337. PubMed PMID: 24894457; PubMed Central PMCID: PMCPMC4096215. DOI:10.1021/pr5001829
  • Lum PY, Singh G, Lehman A, et al. Extracting insights from the shape of complex data using topology. Sci Rep. 2013;3:1236. PubMed PMID: 23393618; PubMed Central PMCID: PMC3566620. eng. DOI:10.1038/srep01236
  • Sardiu ME, Gilmore JM, Groppe BD, et al. Conserved abundance and topological features in chromatin-remodeling protein interaction networks. EMBO Rep. 2015 Jan;16(1):116–126. PubMed PMID: 25427557; PubMed Central PMCID: PMCPMC4304735. DOI:10.15252/embr.201439403
  • Sardiu ME, Gilmore JM, Groppe B, et al. Identification of topological network modules in perturbed protein interaction networks. Sci Rep. 2017 Mar 08;7:43845. PubMed PMID: 28272416; PubMed Central PMCID: PMCPMC5341041. DOI:10.1038/srep43845
  • Gene ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015 Jan;43(Database issue):D1049–56. PubMed PMID: 25428369; PubMed Central PMCID: PMCPMC4383973. DOI:10.1093/nar/gku1179
  • Gene ontology C; Blake JA, Dolan M, et al. Gene Ontology annotations and resources. Nucleic Acids Res. 2013 Jan;41(Databaseissue):D530–5. PubMed PMID: 23161678; PubMed Central PMCID: PMCPMC3531070. DOI:10.1093/nar/gks1050
  • Huang da W, Sherman BT, Stephens R, et al. DAVID gene ID conversion tool. Bioinformation. 2008 Jul 30;2(10):428–430. PubMed PMID: 18841237; PubMed Central PMCID: PMCPMC2561161.
  • Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010 Jul;38(WebServer issue):W214–20. PubMed PMID: 20576703; PubMed Central PMCID: PMCPMC2896186. DOI:10.1093/nar/gkq537
  • Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011 Feb 01;27(3):431–432. PubMed PMID: 21149340; PubMed Central PMCID: PMC3031041. eng. DOI:10.1093/bioinformatics/btq675
  • Saito R, Smoot ME, Ono K, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012 Nov;9(11):1069–1076. PubMed PMID: 23132118; PubMed Central PMCID: PMC3649846. eng. DOI:10.1038/nmeth.2212
  • Tenga MJ, Lazar IM. Proteomic study reveals a functional network of cancer markers in the G1-Stage of the breast cancer cell cycle. BMC Cancer. 2014 Sep 24;14:710. DOI:10.1186/1471-2407-14-710
  • Lee KK, Sardiu ME, Swanson SK, et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol. 2011 Jul 05;7:503. PubMed PMID: 21734642; PubMed Central PMCID: PMCPMC3159981. DOI:10.1038/msb.2011.40
  • Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015 Jun;1(5):e1500447. PubMed PMID: 26601204; PubMed Central PMCID: PMC4640607. eng. DOI:10.1126/sciadv.1500447
  • Kustatscher G, Hegarat N, Wills KL, et al. Proteomics of a fuzzy organelle: interphase chromatin. Embo J. 2014 Mar 18;33(6):648–664. PubMed PMID: 24534090; PubMed Central PMCID: PMCPMC3983682. DOI:10.1002/embj.201387614
  • Li M, Gray W, Zhang H, et al. Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling. J Proteome Res. 2010 Aug 06;9(8):4295–4305. PubMed PMID: 20586475; PubMed Central PMCID: PMCPMC2920032. DOI:10.1021/pr100527g
  • Kim SR, Nguyen TV, Seo NR, et al. Comparative proteomics: assessment of biological variability and dataset comparability. BMC Bioinformatics. 2015 Apr 17;16:121. PubMed PMID: 25888384; PubMed Central PMCID: PMCPMC4704264. DOI:10.1186/s12859-015-0561-9
  • Lakshminarasimhan M, Boanca G, Banks CA, et al. Proteomic and genomic analyses of the Rvb1 and Rvb2 interaction network upon deletion of R2TP complex components. Mol Cell Proteomics. 2016 Mar;15(3):960–974. PubMed PMID: 26831523; PubMed Central PMCID: PMCPMC4813713. DOI:10.1074/mcp.M115.053165
  • Herz HM, Morgan M, Gao X, et al. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science. 2014 Aug 29;345(6200):1065–1070. PubMed PMID: 25170156; PubMed Central PMCID: PMC4508193. eng. DOI:10.1126/science.1255104
  • Alekseyenko AA, Walsh EM, Zee BM, et al. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4184–E4192. PubMed PMID: 28484033; PubMed Central PMCID: PMCPMC5448232. DOI:10.1073/pnas.1702086114
  • Shu S, Lin CY, He HH, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016 Jan 21;529(7586):413–417. PubMed PMID: 26735014; PubMed Central PMCID: PMC4854653. eng. DOI:10.1038/nature16508
  • Liang K, Volk AG, Haug JS, et al. Therapeutic targeting of MLL degradation pathways in MLL-rearranged leukemia. Cell. 2017 Jan 12;168(1–2):59–72 e13. PubMed PMID: 28065413; PubMed Central PMCID: PMC5351781. eng. DOI:10.1016/j.cell.2016.12.011
  • Pettazzoni P, Pizzimenti S, Toaldo C, et al. Induction of cell cycle arrest and DNA damage by the HDAC inhibitor panobinostat (LBH589) and the lipid peroxidation end product 4-hydroxynonenal in prostate cancer cells. Free Radic Biol Med. 2011 Jan 15;50(2):313–322. PubMed PMID: 21078383. DOI:10.1016/j.freeradbiomed.2010.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.