623
Views
30
CrossRef citations to date
0
Altmetric
Review

Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry

, , , , , , , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 809-824 | Received 05 Mar 2017, Accepted 01 Sep 2017, Published online: 11 Sep 2017

References

  • Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.
  • Castellanos FX, Di Martino A, Craddock RC, et al. Clinical applications of the functional connectome. Neuroimage. 2013;80:527–540.
  • Scarr E, Millan MJ, Bahn S, et al. Biomarkers for psychiatry: the journey from fantasy to fact, a report of the 2013 CINP Think Tank. Int J Neuropsychopharmacol. 2015;18(10):pyv042.
  • Singh I, Rose N. Biomarkers in psychiatry. Nature. 2009;460(7252):202–207.
  • Dean B. Dissecting the syndrome of schizophrenia: progress toward clinically useful biomarkers. Schizophr Res Treatment. 2011;2011:614730.
  • Grandjean P. Biomarkers in epidemiology. Clin Chem. 1995;41(12):1800–1803.
  • McGorry P, Keshavan M, Goldstone S, et al. Biomarkers and clinical staging in psychiatry. World Psychiatry. 2014;13(3):211–223.
  • Tansey KE, Guipponi M, Perroud N, et al. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med. 2012;9(10):e1001326.
  • Rabinowitz J, Werbeloff N, Caers I, et al. Determinants of antipsychotic response in schizophrenia: implications for practice and future clinical trials. J Clin Psychiatry. 2014;75(4):e308–e316.
  • Hurko O. The uses of biomarkers in drug development. Ann N Y Acad Sci. 2009;1180:1–10.
  • Panza F, Lozupone M, Stella E, et al. Psychiatry meets pharmacogenetics for the treatment of revolving door patients with psychiatric disorders. Expert Rev Neurother. 2016;16(12):1357–1369.
  • Panza F, Lozupone M, Stella E, et al. The pharmacogenetic road to avoid adverse drug reactions and therapeutic failures in revolving door patients with psychiatric illnesses: focus on the CYP2D6 isoenzymes. Expert Rev Precis Med Drug Dev. 2016;1(5):431–442.
  • Guest PC, Martins-de-Souza D, Schwarz E, et al. Proteomic profiling in schizophrenia: enabling stratification for more effective treatment. Genome Med. 2013;5(3):25.
  • Bartholomeusz CF, Allott K. Neurocognitive and social cognitive approaches for improving functional outcome in early psychosis: theoretical considerations and current state of evidence. Schizophr Res Treat. 2012;2012:815315.
  • Bora E, Yucel M, Pantelis C. Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord. 2009;113(1–2):1–20.
  • Austin MP, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry. 2001;178:200–206.
  • Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139(1):81–132.
  • Wood SJ, Yung AR, McGorry PD, et al. Neuroimaging and treatment evidence for clinical staging in psychotic disorders: from the at-risk mental state to chronic schizophrenia. Biol Psychiatry. 2011;70(7):619–625.
  • Arnone D, Cavanagh J, Gerber D, et al. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry. 2009;195(3):194–201.
  • Hickie IB, Naismith SL, Ward PB, et al. Psychomotor slowing in older patients with major depression: relationships with blood flow in the caudate nucleus and white matter lesions. Psychiatry Res. 2007;155(3):211–220.
  • Soh P, Narayanan B, Khadka S, et al. Joint coupling of awake EEG frequency activity and MRI gray matter volumes in the psychosis dimension: a BSNIP study. Front Psychiatry. 2015;6:162.
  • Tamminga CA, Ivleva EI, Keshavan MS, et al. Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am J Psychiatry. 2013;170(11):1263–1274.
  • Ivleva EI, Bidesi AS, Thomas BP, et al. Brain gray matter phenotypes across the psychosis dimension. Psychiatry Res. 2012;204(1):13–24.
  • Petterson RF. Mapping and sequencing the human genome. Ann Med. 1990;22(6):371–373.
  • Jensen AR. Estimation of the limits of heritability of traits by comparison of monozygotic and dizygotic twins. Proc Natl Acad Sci U S A. 1967;58(1):149–156.
  • Witzmann FA, Arnold RJ, Bai F, et al. A proteomic survey of rat cerebral cortical synaptosomes. Proteomics. 2005;5(8):2177–2201.
  • Schwanhausser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342.
  • Davalieva K, Kostovska IM, Dwork AJ. Proteomics research in schizophrenia. Front Cell Neurosci. 2016;10:18.
  • Higa GS, De Sousa E, Walter LT, et al. MicroRNAs in neuronal communication. Mol Neurobiol. 2014;49(3):1309–1326.
  • Cao X, Yeo G, Muotri AR, et al. Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci. 2006;29:77–103.
  • Kim AH, Reimers M, Maher B, et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res. 2010;124(1–3):183–191.
  • Lopez JP, Lim R, Cruceanu C, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20(7):764–768.
  • Mueller M, Martens L, Apweiler R. Annotating the human proteome: beyond establishing a parts list. Biochim Biophys Acta. 2007;1774(2):175–191.
  • Martins-de-Souza D. Comprehending depression through proteomics. Int J Neuropsychopharmacol. 2012;15(10):1373–1374.
  • Alawieh A, Zaraket FA, Li JL, et al. Systems biology, bioinformatics, and biomarkers in neuropsychiatry. Front Neurosci. 2012;6:187.
  • Ngounou Wetie AG, Sokolowska I, Wormwood K, et al. Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry. 2013;1(1):8.
  • Rothenberger A, Rhode LA, Rothenberger LG. Biomarkers in Child Mental Health: a bio-psycho-social perspective is needed. Behav Brain Funct. 2015;11(1):31.
  • Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50.
  • Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–1861.
  • Martins-de-Souza D, Maccarrone G, Wobrock T, et al. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res. 2010;44(16):1176–1189.
  • Martins-de-Souza D. Proteomics as a tool for understanding schizophrenia. Clin Psychopharmacol Neurosci. 2011;9(3):95–101.
  • Lemoine J, Fortin T, Salvador A, et al. The current status of clinical proteomics and the use of MRM and MRM3 for biomarker validation. Expert Rev Mol Diagn. 2012;12(4):333–342.
  • Yau Y. Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics. 2013;2013:180605.
  • Patel S. Role of proteomics in biomarker discovery and psychiatric disorders: current status, potentials, limitations and future challenges. Expert Rev Proteomics. 2012;9(3):249–265.
  • Tambor V, Fucíková A, Lenco J, et al. Application of proteomics in biomarker discovery: a primer for the clinician. Physiol Res. 2010;59(4):471–497.
  • Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, et al. The need for phosphoproteomic approaches in psychiatric research. J Psychiatr Res. 2011;45(10):1404–1406.
  • Koike S, Bundo M, Iwamoto K, et al. A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study. Transl Psychiatry. 2014;4:e379.
  • Güzey C, Spigset O. Genotyping as a tool to predict adverse drug reactions. Curr Top Med Chem. 2004;4(13):1411–1421.
  • Kobeissy FH, Gulbakan B, Alawieh A, et al. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. Omics. 2014;18(2):111–131.
  • Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods. 2013;61(3):186–218.
  • Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014;104:140–150.
  • Malik R, Dulla K, Nigg EA, et al. From proteome lists to biological impact–tools and strategies for the analysis of large MS data sets. Proteomics. 2010;10(6):1270–1283.
  • Paquet C, Magnin E, Wallon D, et al. Utility of CSF biomarkers in psychiatric disorders: a national multicentre prospective study. Alzheimers Res. 2016;8:27.
  • Skold K, Svensson M, Norrman M, et al. The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics. 2007;7(24):4445–4456.
  • Wang Y, Zhang Y, Hu W, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709.
  • Hulette CM, Welsh-Bohmer KA, Crain B, et al. Rapid brain autopsy. The Joseph and Kathleen Bryan Alzheimer’s Disease Research Center experience. Arch Pathol Lab Med. 1997;121(6):615–618.
  • Woods AG, Iosifescu DV, Darie CC. Biomarkers in major depressive disorder: the role of mass spectrometry. Adv Exp Med Biol. 2014;806:545–560.
  • Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12(12):3444–3452.
  • Ém S, Janáky T, Szabó Z, et al. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome. Eur Neuropsychopharmacol. 2010;20(2):96–111.
  • Filiou MD, Turck CW, Martins-de-Souza D. Quantitative proteomics for investigating psychiatric disorders. PROTEOMICS Clin Appl. 2011;5(1–2):38–49.
  • Liu Y, Yang N, Hao W, et al. Dynamic proteomic analysis of protein expression profiles in whole brain of Balb/c mice subjected to unpredictable chronic mild stress: implications for depressive disorders and future therapies. Neurochem Int. 2011;58(8):904–913.
  • Yang Y, Yang D, Tang G, et al. Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience. 2013;247:191–200.
  • Wang Z, Li W, Chen J, et al. Proteomic analysis reveals energy metabolic dysfunction and neurogenesis in the prefrontal cortex of a lipopolysaccharide-induced mouse model of depression. Mol Med Rep. 2016;13(2):1813-1820.
  • Gellén B, Völgyi K, Györffy BA, et al. Proteomic investigation of the prefrontal cortex in the rat clomipramine model of depression. J Proteomics. 2017;153:53-64.
  • Cox DA, Gottschalk MG, Stelzhammer V, et al. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: a proteomic systems approach. World J Biol Psychiatry. 2016;1–12. doi: 10.1080/15622975.2016.1252465 [Epub ahead of print].
  • Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, et al. Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function. Eur Arch Psychiatry Clin Neurosci. 2012;262(8):657–666.
  • Beasley CL, Pennington K, Behan A, et al. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics. 2006;6(11):3414–3425.
  • Martins-de-Souza D, Guest PC, Harris LW, et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry. 2012;2(3):e87.
  • Wesseling H, Gottschalk MG, Bahn S. Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders. Int J Neuropsychopharmacol. 2015;18(1):pyu015–pyu015.
  • Novikova SI, He F, Cutrufello NJ, et al. Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis. 2006;23(1):61–76.
  • Pennington K, Beasley CL, Dicker P, et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry. 2008;13(12):1102–1117.
  • Schubert KO, Föcking M, Cotter DR. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res. 2015;167(1–3):64–72.
  • Behan Á, Byrne C, Dunn MJ, et al. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry. 2009;14(6):601–613.
  • Matsumoto J, Sugiura Y, Yuki D, et al. Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem. 2011;400(7):1933–1943.
  • MacDonald ML, Ding Y, Newman J, et al. Altered glutamate protein co-expression network topology linked to spine loss in the auditory cortex of schizophrenia. Biol Psychiatry. 2015;77(11):959–968.
  • Café-Mendes CC, Ferro ES, Torrão AS, et al. Peptidomic analysis of the anterior temporal lobe and corpus callosum from schizophrenia patients. J Proteomics. 2017;151:97–105.
  • Barakauskas VE, Moradian A, Barr AM, et al. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res. 2016;177(1–3):44–51.
  • Zheng P, Wang Y, Chen L, et al. Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics. 2013;12:207–214.
  • Liu X, Zheng P, Zhao X, et al. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res. 2015;14:2322–2330.
  • Herberth M, Koethe D, Levin Y, et al. Peripheral profiling analysis for bipolar disorder reveals markers associated with reduced cell survival. Proteomics. 2011;11(1):94–105.
  • Hayashi-Takagi A, Vawter MP, Iwamoto K. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry. 2014;75(12):920–928.
  • De Witte L, Tomasik J, Schwarz E, et al. Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res. 2014;154(1–4):23–29.
  • Bauer IE, Pascoe MC, Wollenhaupt-Aguiar B, et al. Inflammatory mediators of cognitive impairment in bipolar disorder. J Psychiatr Res. 2014;56:18–27.
  • Stelzhammer V, Haenisch F, Chan MK, et al. Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int J Neuropsychopharmacol. 2014;17(10):1599–1608.
  • Xu HB, Zhang RF, Luo D, et al. Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation. Int J Neuropsychopharmacol. 2012;15(10):1413–1425.
  • Lee MY, Kim EY, Kim SH, et al. Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:60–68.
  • Bot M, Chan MK, Jansen R, et al. Serum proteomic profiling of major depressive disorder. Transl Psychiatry. 2015;5:e599.
  • Martin C, Tansey KE, Schalkwyk LC, et al. The inflammatory cytokines: molecular biomarkers for major depressive disorder? Biomark Med. 2015;9(2):169–180.
  • Cattaneo A, Ferrari C, Uher R, et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016;19(10):pii: pyw045.
  • Lee J, Joo EJ, Lim HJ, et al. Proteomic analysis of serum from patients with major depressive disorder to compare their depressive and remission statuses. Psychiatry Investig. 2015;12(2):249–259.
  • Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609.
  • Chen J, Huang C, Song Y, et al. Comparative proteomic analysis of plasma from bipolar depression and depressive disorder: identification of proteins associated with immune regulatory. Protein Cell. 2015;6(12):908–911.
  • Zhang TY, Labonte B, Wen XL, et al. Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 2013;38(1):111–123.
  • Daskalakis NP, Cohen H, Nievergelt CM, et al. New translational perspectives for blood-based biomarkers of PTSD: from glucocorticoid to immune mediators of stress susceptibility. Exp Neurol. 2016;284(Pt B):133–140.
  • Hall BS, Moda RN, Liston C. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol Stress. 2015;1:174–183.
  • Watson S, Gallagher P, Ritchie JC, et al. Hypothalamic-pituitary adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496–502.
  • Pariante CM, Dazzan P, Danese A, et al. Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the Aesop first-onset psychosis study. Neuropsychopharmacology. 2005;30(10):1923–1931.
  • Ryan MC, Sharifi N, Condren R, et al. Evidence of basal pituitary adrenal overactivity in first episode, drug naive patients with schizophrenia. Psychoneuroendocrinology. 2004;29(8):1065–1070.
  • Cohrs S, Roher C, Jordan W, et al. The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology. 2006;185(1):11–18.
  • Nicolo JP, Berger GE, Garner BA, et al. The effect of atypical antipsychotics on pituitary gland volume in patients with first episode psychosis: a longitudinal MRI study. Schizophr Res. 2010;116(1):49–54.
  • Petzold A, Thompson EJ, Keir G, et al. Longitudinal one-year study of levels and stoichiometry of neurofilament heavy and light chain concentrations in CSF in patients with multiple system atrophy. J Neurol Sci. 2009;279(1–2):76–79.
  • Ditzen C, Tang N, Jastorff AM, et al. Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology. 2012;37(4):1013–1025.
  • Stelzhammer V, Alsaif M, Chan MK, et al. Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res. 2015;60:40–48.
  • Martins-de-Souza D, Harris LW, Guest PC, et al. The role of proteomics in depression research. Eur Arch Psychiatry Clin Neurosci. 2010;260(6):499–506.
  • Saia-Cereda VM, Cassoli JS, Martins-de-Souza D, et al. Psychiatric disorders biochemical pathways unraveled by human brain proteomics. Eur Arch Psychiatry Clin Neurosci. 2017;267(1):3–17.
  • Schiavone S, Neri M, Mhillaj E, et al. The NADPH oxidase NOX2 as a novel biomarker for suicidality: evidence from human post mortem brain samples. Transl Psychiatry. 2016;6:e813.
  • Frye MA, Nassan M, Jenkins GD, et al. Feasibility of investigating differential proteomic expression in depression: implications for biomarker development in mood disorders. Transl Psychiatry. 2015;5:e689.
  • Hensley K, Venkova K, Christov A, et al. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neuro-disease indications. Mol Neurobiol. 2011;43(3):180–191.
  • Pijnenburg YA, Janssen JC, Schoonenboom NS, et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer’s disease and controls. Dement Geriatr Cogn Disord. 2007;23(4):225–230.
  • Gnanapavan S, Grant D, Illes-Toth E, et al. Neural cell adhesion molecule–description of a CSF ELISA method and evidence of reduced levels in selected neurological disorders. J Neuroimmunol. 2010;225(1–2):118–122.
  • Vawter MP, Frye MA, Hemperly JJ, et al. Elevated concentration of N-CAM VASE isoforms in schizophrenia. J Psychiatr Res. 2000;34(1):25–34.
  • Vawter MP. Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol. 2000;405(1–3):385–395.
  • Poltorak M, Frye MA, Wright R, et al. Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem. 1996;66(4):1532–1538.
  • Poulter MO, Du L, Weaver IC, et al. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry. 2008;64(8):645–652.
  • Yoshimi N, Futamura T, Kakumoto K, et al. Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin. 2016;5:151–158.
  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(6):1926–1945.
  • Batch BC, Hyland K, Svetkey LP. Branch chain amino acids: biomarkers of health and disease. Curr Opin Clin Nutr Metab Care. 2014;17(1):86–89.
  • Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, et al. Branched-chain amino acids as new biomarkers of major depression - a novel neurobiology of mood disorder. PLoS One. 2016;11(8):e0160542.
  • Ali-Sisto T, Tolmunen T, Toffol E, et al. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology. 2016;70:25–32.
  • Liu ML, Zheng P, Liu Z, et al. GC-MS based metabolomics identification of possible novel biomarkers for schizophrenia in peripheral blood mononuclear cells. Mol Biosyst. 2014;10(9):2398–2406.
  • Brundin L, Sellgren CM, Lim CK, et al. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Transl Psychiatry. 2016;6(8):e865.
  • Quinones MP, Rima Kaddurah-Daouk R. Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis. 2009;35(2):165–176.
  • Hagenbeek FA, Kluft C, Hankemeier T, et al. Discovery of biochemical biomarkers for aggression: a role for metabolomics in psychiatry. Am J Med Genet B Neuropsychiatr Genet. 2016;171(5):719–732.
  • Horrobin DF. Phospholipid metabolism and depression: the possible roles of phospholipase A2 and coenzyme A-independent transacylase. Hum Psychopharmacol. 2001;16(1):45–52.
  • Parker G, Gibson NA, Brotchie H, et al. Omega-3 fatty acids and mood disorders. Am J Psychiatry. 2006;163(6):969–978.
  • Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998;30(3):193–208.
  • Assies J, Pouwer F, Lok A, et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PloS One. 2010;5(5):e10635.
  • McNamara RK, Jandacek R, Rider T, et al. Fatty acid composition of the postmortem prefrontal cortex of adolescent male and female suicide victims. Prostaglandins Leukot Essent Fatty Acids. 2009;80(1):19–26.
  • Bentsen H, Solberg DK, Refsum H, et al. Bimodal distribution of polyunsaturated fatty acids in schizophrenia suggests two endophenotypes of the disorder. Biol Psychiatry. 2011;70(1):97–105.
  • Kaddurah-Daouk R, McEvoy J, Baillie RA, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry. 2007;12(10):934–945.
  • Zheng P, Gao HC, Li Q, et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J Proteome Res. 2012;11(3):1741−1748.
  • Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–1162.
  • Evrensel A, Ceylan ME. The gut-brain axis: the missing link in depression. Clin Psychopharmacol Neurosci. 2015;13(3):239–244.
  • Maes M, Kubera M, Leunis JC, et al. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55–62.
  • Steenbergen L, Sellaro R, van Hemert S, et al. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–264.
  • Galley JD, Nelson MC, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa associated microbiota. BMC Microbiol. 2014;14:189.
  • Wong ML, Inserra A, Lewis MD, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21(6):797–805.
  • Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–796.
  • Szczesniak O, Hestad K, Hanssen JF, et al. Isovaleric acid in stool correlates with human depression. Nutr Neurosci. 2015;19(7):279–283.
  • Bayés A, Collins MO, Galtrey CM, et al. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Mol Brain. 2014;7:88.
  • Kekesi KA, Juhasz G, Simor A, et al. Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One. 2012;7(12):e50532.
  • Klempan TA, Sequeira A, Canetti L, et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry. 2009;14(2):175–189.
  • Michel TM, Frangou S, Thiemeyer D, et al. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psychiatry Res. 2007;151(1–2):145–150.
  • Rozek LS, Dolinoy DC, Sartor MA, et al. Epigenetics: relevance and implications for public health. Annu Rev Public Health. 2014;35:105–122.
  • Landgraf D, McCarthy MJ, Welsh DK. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr Psychiatry Rep. 2014;16(10):483.
  • Raamsdonk LM, Teusink B, Broadhurst D, et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol. 2001;19(1):45–50.
  • Nemutlu E, Zhang S, Juranic NO, et al. 18O assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases. Croat Med J. 2012;53(6):529–534.
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–1189.
  • Nicholson JK, Wilson ID. High resolution proton NMR spectroscopy of biological fluids. Prog NMR Spectrosc. 1989;21:449–501.
  • Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology. 2009;34(1):173–186.
  • Nicholson JK, Wilson ID, Lindon JC. Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics. 2011;12(1):103–111.
  • Sethi S, Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2015;19(3):pyv096.
  • Kaddurah-Daouk R, Rm W; Pharmacometabolomics Research Network. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther. 2014;95(2):154–167.
  • Soga T, Igarashi K, Ito C, et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 2009;81(15):6165–6174.
  • Yoshimi N, Futamura T, Bergen SE, et al. Cerebrospinal fluid metabolomics identifies a key role of isocitratedehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry. 2016;21(3):1504–1510.
  • Patkar A, Rozen S, Mannelli P, et al. Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study. Psychopharmacology (Berl). 2009;206(3):479–489.
  • Kuwabara H, Yamasue S, Koike H, et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814.
  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44(6):1071–1079.
  • Frisardi V, Panza F, Seripa D, et al. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res. 2011;50(4):313–330.
  • Naudí A, Cabré R, Jové M, et al. Lipidomics of human brain aging and Alzheimer’s disease pathology. Int Rev Neurobiol. 2015;122:133–189.
  • Sonnino S, Aureli M, Grassi S, et al. Lipid rafts in neurodegeneration and neuroprotection. Mol Neurobiol. 2014;50(1):130–148.
  • American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. J Clin Psychiatry. 2004;65(2):267–272.
  • Lee LH, Shui G, Farooqui AA, et al. Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids? Int J Neuropsychopharmacol. 2009;12(7):953–964.
  • Ng F, Berk M, Dean O, et al. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851–876.
  • Panza F, Frisardi V, Capurso C, et al. Possible role of S-adenosyl-methionine, S-adenosyl-homocysteine, and polyunsaturated fatty acids in predementia syndromes and Alzheimer’s disease. J Alzheimers Dis. 2009;16(3):467–470.
  • Margari F, Lozupone M, Pisani R, et al. Metabolic syndrome: differences between psychiatric and internal medicine patients. Int J Psychiatry Med. 2013;45(3):203–226.
  • Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2007;10(11):735–742.
  • Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–184.
  • Mayer EA. Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci. 2011;12(8):453–466.
  • Grenham S, Clarke G, Cryan JF, et al. Brain–gut–microbe communication in health and disease. Front Physiol. 2011;2:94.
  • Forsythe P, Kunze WA, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut brain axis? BMC Med. 2016;14:58.
  • Foster JA, Lyte M, Meyer E, et al. Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol. 2016;19(5):pii: pyv114.
  • Bienenstock J, Kunze W, Forsythe P. Microbiota and the gut–brain axis. Nutr Rev. 2015;73(Suppl 1):28–31.
  • Cryan JF, O’Mahony SM. The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23(3):187–192.
  • Fernandez-Real JM, Serino M, Blasco G, et al. Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab. 2015;100(12):4505–4513.
  • Rogers GB, Keating DJ, Young RL, et al. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016;21(6):738–748.
  • Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016;6:e774.
  • Ogbonnaya ES, Clarke G, Shanahan F, et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78(4):e7–9.
  • Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–673.
  • Slyepchenko A, Maes M, Köhler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neurosci Biobehav Rev. 2016;64:83–100.
  • Anglin R, Surette M, Moayyedi P, et al. Lost in translation: the gut microbiota in psychiatric illness. Can J Psychiatry. 2015;60(10):460–463.
  • Beck AT. Depression: causes and treatment. Philadelphia: University of Pennsylvania Press, 1967; 2001.
  • Dinan TG, Cryan JF. Mood by microbe: towards clinical translation. Genome Med. 2016;8(1):36.
  • Soczynska JK, Mansur RB, Brietzke E, et al. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res. 2012;235(2):302–317.
  • Miyaoka T, Wake R, Furuya M, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(2):222–226.
  • Dash S, Clarke G, Berk M, et al. The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry. 2015;28(1):1–6.
  • Jørgensen BP, Hansen JT, Krych L, et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS One. 2014;9(8):e103398.
  • Miki T, Eguchi M, Kurotani K, et al. Dietary fiber intake and depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition. 2016;32(5):584–589.
  • Kobeissy FH, Sadasivan S, Liu J, et al. Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics. 2008;5(2):293–314.
  • Boksa P. A way forward for research on biomarkers for psychiatric disorders. J Psychiatry Neurosci. 2013;38(2):75–77.
  • FDA U. Table of Pharmacogenomic Biomarkers in Drug Labels cited 2017 Jun 12. Available from: http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm
  • Venkatasubramanian G, Keshavan MS. Biomarkers in psychiatry – a critique. Ann Neurosci. 2016;23(1):3–5.
  • Martins-de-Souza D. Biomarkers for psychiatric disorders: where are we standing? Dis Markers. 2013;35(1):1–2.
  • Kapur S. AG Phillips and TR Insel. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–1179.
  • Kobeissy F, Alawieh A, Mondello S, et al. Biomarkers in psychiatry: how close are we? Front Psychiatry. 2013;7(3):114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.