306
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding Leishmania parasites through proteomics and implications for the clinic

&
Pages 371-390 | Received 23 Nov 2017, Accepted 20 Apr 2018, Published online: 02 May 2018

References

  • Das A, Karthick M, Dwivedi S, et al. Epidemiologic correlates of mortality among symptomatic visceral leishmaniasis cases: findings from situation assessment in high endemic foci in India. PLoS Negl Trop Dis. 2016 Nov;10(11):e0005150. PubMed PMID: 27870870; PubMed Central PMCID: PMC5117587.
  • Martins-Melo FR, Lima Mda S, Ramos AN Jr., et al. Mortality and case fatality due to visceral leishmaniasis in Brazil: a nationwide analysis of epidemiology, trends and spatial patterns. PLoS One. 2014;9(4):e93770. PubMed PMID: 24699517; PubMed Central PMCID: PMC3974809.
  • Adam GK, Ali KM, Abdella YH, et al. Trend in cumulative cases and mortality rate among visceral leishmaniasis patients in Eastern Sudan: a 14-year registry, 2002–2015. Int J Infect Dis. 2016 Oct;51:81–84. PubMed PMID: 27596686.
  • Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. PubMed PMID: 22693548; PubMed Central PMCID: PMC3365071.
  • Organization WH. Leishmaniasis: situation and trends. [cited 2016 Mar 4]. Available from: http://www.who.int/gho/neglected_diseases/leishmaniasis/en
  • Shendure J, Lieberman Aiden E. The expanding scope of DNA sequencing. Nat Biotechnol. 2012 Nov;30(11):1084–1094. PubMed PMID: 23138308; PubMed Central PMCID: PMC4149750.
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet. 2001;2:343–372. PubMed PMID: 11701654.
  • Myler PJ, Stuart KD. Recent developments from the Leishmania genome project. Curr Opin Microbiol. 2000 Aug;3(4):412–416. PubMed PMID: 10972503.
  • Chambers G, Lawrie L, Cash P, et al. Proteomics: a new approach to the study of disease. J Pathol. 2000 Nov;192(3):280–288. PubMed PMID: 11054709.
  • Wilkins M, Williams KL, Appel RD, et al. Proteome research: new frontiers in functional genomics. Springer Science & Business Media. Springer-Verlag Berlin Heidelberg. 2013.
  • Persidis A. Proteomics. Nat Biotechnol. 1998 Apr;16(4):393–394. PubMed PMID: 9555734.
  • Page MJ, Amess B, Rohlff C, et al. Proteomics: a major new technology for the drug discovery process. Drug Discov Today. 1999 Feb;4(2):55–62. PubMed PMID: 10234157.
  • Wilkins MR, Sanchez J-C, Gooley AA, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Gene Eng Rev. 1996;13(1):19–50.
  • Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine. 2012;30(26):3834–3842.
  • Sundar S, Singh B. Identifying vaccine targets for anti-leishmanial vaccine development. Expert Rev Vaccines. 2014;13(4):489–505.
  • Peters NC, Egen JG, Secundino N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008 Aug 15;321(5891):970–974. PubMed PMID: 18703742; PubMed Central PMCID: PMC2606057.
  • Russell DG, Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunology. 1986 Apr 1;136(7):2613–2620. PubMed PMID: 3950420.
  • Ueno N, Wilson ME. Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol. 2012 Aug;28(8):335–344. PubMed PMID: 22726697; PubMed Central PMCID: PMC3399048.
  • Stuart K, Brun R, Croft S, et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008 Apr;118(4):1301–1310. PubMed PMID: 18382742; PubMed Central PMCID: PMC2276762.
  • Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995 Sep;4(3):143–152. PubMed PMID: 8548192.
  • Secundino NF, Eger-Mangrich I, Braga EM, et al. Lutzomyia longipalpis peritrophic matrix: formation, structure, and chemical composition. J Med Entomol. 2005 Nov;42(6):928–938. PubMed PMID: 16465730.
  • Pimenta PF, Turco SJ, McConville MJ, et al. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science. 1992 Jun 26;256(5065):1812–1815. PubMed PMID: 1615326.
  • Rogers ME. The role of leishmania proteophosphoglycans in sand fly transmission and infection of the Mammalian host. Front Microbiol. 2012;3:223. PubMed PMID: 22754550; PubMed Central PMCID: PMC3384971.
  • Schlein Y, Jacobson RL, Messer G. Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9944–9948. PubMed PMID: 1409724; PubMed Central PMCID: PMC50250.
  • Edwards AM, Arrowsmith CH, Christendat D, et al. Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Mol Biol. 2000;7:970–972.
  • Montelione GT, Zheng D, Huang YJ, et al. Protein NMR spectroscopy in structural genomics. Nat Struct Biol. 2000 Nov;7(Suppl):982–985. PubMed PMID: 11104006.
  • Bauer M, Ueffing M. Reverse genetics for proteomics: from proteomic discovery to scientific content. J Neural Transm. 2006 Aug;113(8):1033–1040. PubMed PMID: 16835688.
  • Waldrip ZJ, Byrum SD, Storey AJ, et al. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics. 2014 Sep;9(9):1207–1211. PubMed PMID: 25147920; PubMed Central PMCID: PMC4169012.
  • Norin M, Sundstrom M. Structural proteomics: developments in structure-to-function predictions. Trends Biotechnol. 2002 Feb;20(2):79–84. PubMed PMID: 11814598.
  • Godovac‐Zimmermann J, Brown LR. Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev. 2001;20(1):1–57.
  • Gavin A-C, Bösche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002;415(6868):141–147.
  • Cho S-Y, Park S-G, Lee D-H, et al. Protein-protein interaction networks: from interactions to networks. BMB Rep. 2004;37(1):45–52.
  • Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001;24(3):218–229.
  • Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60(5):523–533.
  • Monti M, Orrù S, Pagnozzi D, et al. Interaction proteomics. Biosci Rep. 2005;25(1–2):45–56.
  • Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999;17(10):1030–1032.
  • Soldes OS, Kuick RD, Thompson IA 2nd, et al. Differential expression of Hsp27 in normal oesophagus, Barrett’s metaplasia and oesophageal adenocarcinomas. Br J Cancer. 1999 Feb;79(3–4):595–603. PubMed PMID: 10027336; PubMed Central PMCID: PMC2362445.
  • Banks RE, Dunn MJ, Hochstrasser DF, et al. Proteomics: new perspectives, new biomedical opportunities. Lancet. 2000 Nov 18;356(9243):1749–1756. PubMed PMID: 11095271.
  • Dunn MJ. Studying heart disease using the proteomic approach. Drug Discov Today. 2000 Feb;5(2):76–84. PubMed PMID: 10652458.
  • Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999 Oct;17(10):994–999. PubMed PMID: 10504701.
  • Zhou H, Ranish JA, Watts JD, et al. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol. 2002 May;20(5):512–515. PubMed PMID: 11981568.
  • Alban A, David SO, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 2003 Jan;3(1):36–44. DOI:10.1002/pmic.200390006. PubMed PMID: 12548632.
  • Grant T, Grigorieff N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife. 2015 May 29;4:e06980. PubMed PMID: 26023829; PubMed Central PMCID: PMC4471936.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685.
  • Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987;262(21):10035–10038.
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–4021.
  • Handman E, Mitchell G, Goding J. Identification and characterization of protein antigens of Leishmania tropica isolates. J Immunol. 1981;126(2):508–512.
  • Saravia N, Gemmell M, Nance S, et al. Two-dimensional electrophoresis used to differentiate the causal agents of American tegumentary leishmaniasis. Clin Chem. 1984;30(12):2048–2052.
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–2301.
  • Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–153.
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. PubMed PMID: 2675315.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312(5771):212–217.
  • Rosenzweig D, Smith D, Opperdoes F, et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. Faseb J. 2008;22(2):590–602.
  • Chawla B, Jhingran A, Panigrahi A, et al. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin–susceptible–resistant Leishmania donovani. PloS One. 2011;6(10):e26660.
  • Hem S, Gherardini PF, Hourdel V, et al. Identification of Leishmania‐specific protein phosphorylation sites by LC‐ESI‐MS/MS and comparative genomics analyses. Proteomics. 2010;10(21):3868–3883.
  • Biyani N, Madhubala R. Quantitative proteomic profiling of the promastigotes and the intracellular amastigotes of Leishmania donovani isolates identifies novel proteins having a role in Leishmania differentiation and intracellular survival. Biochimica Et Biophysica Acta (Bba)-Proteins and Proteomics. 2012;1824(12):1342–1350.
  • Skoda U, Faßbender L, Händler C, et al. Application of immobilized pH gradient isoelectric focusing to forensic hemogenetics: a survey on a three year experience with the transferrin (TF) and alpha 1‐antitrypsin (PI) systems. Electrophoresis. 1988;9(9):606–609.
  • Righetti PG. Isoelectric focusing in immobilized pH gradients. J Chromatogr. 1984;300:165–224.
  • Tannu NS, Hemby SE. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc. 2006;1(4):1732–1742.
  • Rukmangadachar LA, Kataria J, Hariprasad G, et al. Two-dimensional difference gel electrophoresis (DIGE) analysis of sera from visceral leishmaniasis patients. Clin Proteomics. 2011;8(1):4.
  • Reynolds K, Fang C, Xiadong C, et al. Comparative two-dimensional gel electrophoresis maps for promastigotes of Leishmania amazonensis and L. Major. Brazilian J Infec Dis. 2006;10(1):1–6.
  • Görg A, Drews O, Lück C, et al. 2‐DE with IPGs. Electrophoresis. 2009;30(S1):S122–S132.
  • Kiraga J, Mackiewicz P, Mackiewicz D, et al. The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics. 2007;8(1):163.
  • Drummelsmith J, Brochu V, Girard I, et al. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics. 2003;2(3):146–155.
  • Brobey RK, Soong L. Establishing a liquid‐phase IEF in combination with 2‐DE for the analysis of Leishmania proteins. Proteomics. 2007;7(1):116–120.
  • Brotherton M-C, Racine G, Ouellette M. Separation of basic proteins from Leishmania using a combination of free flow electrophoresis (FFE) and 2D electrophoresis (2-DE) under basic conditions. Parasite Genomics Protoc. 2015;247–259; doihttps://doi.org/10.1007/978-1-4939-1438-8_15
  • Drews O, Reil G, Parlar H, et al. Setting up standards and a reference map for the alkaline proteome of the gram‐positive bacterium Lactococcus lactis. Proteomics. 2004;4(5):1293–1304.
  • Morales MA, Watanabe R, Laurent C, et al. Phosphoproteomic analysis of Leishmania donovani pro‐and amastigote stages. Proteomics. 2008;8(2):350–363.
  • Morales MA, Watanabe R, Dacher M, et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci. 2010;107(18):8381–8386.
  • Pescher P, Blisnick T, Bastin P, et al. Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation. Cell Microbiol. 2011;13(7):978–991.
  • Righetti PG, Castagna A, Antonioli P, et al. Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis. 2005;26(2):297–319.
  • Leifso K, Cohen-Freue G, Dogra N, et al. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol. 2007;152(1):35–46.
  • Kastenholz B. Quantitative preparative native continuous polyacrylamide gel electrophoresis (QPNC-PAGE). Nature Proceedings. 2008. doi:10.1038/npre.2008.1782.1
  • Kastenholz B. Important contributions of a new quantitative preparative native continuous polyacrylamide gel electrophoresis (QPNC-PAGE) procedure for elucidating metal cofactor metabolisms in protein-misfolding diseases-a theory. Protein Pept Lett. 2006;13(5):503–508.
  • Naaby-Hansen S, Waterfield MD, Cramer R. Proteomics–post-genomic cartography to understand gene function. Trends Pharmacol Sci. 2001 Jul;22(7):376–384. PubMed PMID: 11431033.
  • Stephens DJ, Banting G. The use of yeast two-hybrid screens in studies of protein: proteininteractions involved in trafficking. Traffic. 2000 Oct;1(10):763–768. PubMed PMID: 11208066.
  • Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000 Jun 15;405(6788):837–846. . PubMed PMID: 10866210.
  • Neubauer G, King A, Rappsilber J, et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nat Genet. 1998 Sep;20(1):46–50. PubMed PMID: 9731529.
  • Bock JR, Gough DA. Predicting protein–protein interactions from primary structure. Bioinformatics. 2001 May;17(5):455–460. PubMed PMID: 11331240.
  • Eisenberg D, Marcotte EM, Xenarios I, et al. Protein function in the post-genomic era. Nature. 2000 Jun 15;405(6788):823–826. PubMed PMID: 10866208.
  • Sinha S, Arora S, Kosalai K, et al. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp Funct Genomics. 2002;3(6):470–483.
  • Sinha S, Kosalai K, Arora S, et al. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology. 2005;151(7):2411–2419.
  • Downing T, Imamura H, Decuypere S, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011 Dec;21(12):2143–2156. PubMed PMID: 22038251; PubMed Central PMCID: PMC3227103.
  • Moura H, Ospina M, Ar WOOLFITT, et al. Analysis of four human microsporidian isolates by MALDI‐TOF mass spectrometry. J Eukaryot Microbiol. 2003;50(3):156–163.
  • Vierstraete E, Verleyen P, Baggerman G, et al. A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc Natl Acad Sci U S A. 2004;101(2):470–475.
  • Levy F, Bulet P, Ehret-Sabatier L. Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics. 2004;3(2):156–166.
  • Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis. 2014 Oct 8;(10):e3197. PubMed PMID: 25275509; PubMed Central PMCID: PMC4183472.
  • Scholl DC, Embers ME, Caskey JR, et al. Immunomodulatory effects of tick saliva on dermal cells exposed to Borrelia burgdorferi, the agent of Lyme disease. Parasit Vectors. 2016 Jul 08;9(1):394. PubMed PMID: 27391120; PubMed Central PMCID: PMC4938952.
  • Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239(4845):1306–1309.
  • Samuelson J, Lerner E, Tesh R, et al. A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. J Exp Med. 1991;173(1):49–54.
  • Rogers KA, Titus RG. Immunomodulatory effects of Maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003;25(3):127–134.
  • Rohousová I, Volf P. Sand fly saliva: effects on host immune response and Leishmania transmission. Folia Parasitol. 2006;53(3):161.
  • Oliveira F, Anderson JM, Kamhawi S, et al. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7(52). doi:10.1186/1471-2164-7-52.
  • Hostomská J, Volfová V, Mu J, et al. Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus. BMC Genomics. 2009;10(1):282.
  • Valenzuela JG, Belkaid Y, Garfield MK, et al. Toward a defined anti-leishmania vaccine targeting vector antigens. J Exp Med. 2001;194(3):331–342.
  • Volf P, Rohoušová I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001;122(01):37–41.
  • Bahia D, Gontijo NF, León IR, et al. Antibodies from dogs with canine visceral leishmaniasis recognise two proteins from the saliva of Lutzomyia longipalpis. Parasitol Res. 2007;100(3):449–454.
  • Drahota J, Lipoldova M, Volf P, et al. Specificity of anti‐saliva immune response in mice repeatedly bitten by Phlebotomus sergenti. Parasite Immunol. 2009;31(12):766–770.
  • Marzouki S, Ahmed MB, Boussoffara T, et al. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg. 2011;84(5):653–661.
  • Vlkova M, Rohousova I, Drahota J, et al. Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis. 2011;5(10):e1344.
  • Valenzuela JG, Garfield M, Rowton ED, et al. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207(21):3717–3729.
  • Martín-Martín I, Molina R, Jiménez M. An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Tropica. 2012;123(1):22–30.
  • Martín-Martín I, Molina R, Jiménez M. Identifying salivary antigens of Phlebotomus argentipes by a 2DE approach. Acta Tropica. 2013;126(3):229–239.
  • Mathis A, Depaquit J, Dvořák V, et al. Identification of phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasit Vectors. 2015;8(1):266.
  • Lafri I, Almeras L, Bitam I, et al. Identification of Algerian field-caught phlebotomine sand fly vectors by MALDI-TOF MS. PLoS Negl Trop Dis. 2016;10(1):e0004351.
  • Laroche M, Almeras L, Pecchi E, et al. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar J. 2017;16(1):5.
  • Dillon R, Lane P. Bloodmeal digestion in the midgut of Phlebotomus papatasi and Phlebotomus langeroni. Med Vet Entomol. 1993;7(3):225–232.
  • Telleria EL, de Araújo APO, Secundino NF, et al. Trypsin-like serine proteases in Lutzomyia longipalpis–expression, activity and possible modulation by Leishmania infantum chagasi. PLoS One. 2010;5(5):e10697.
  • Eschenlauer SC, Faria MS, Morrison LS, et al. Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major. Cell Microbiol. 2009;11(1):106–120.
  • Morrison LS, Goundry A, Faria MS, et al. Ecotin‐like serine peptidase inhibitor ISP1 of Leishmania major plays a role in flagellar pocket dynamics and promastigote differentiation. Cell Microbiol. 2012;14(8):1271–1286.
  • Dobson DE, Kamhawi S, Lawyer P, et al. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010 Nov 11;6(11):e1001185. PubMed PMID: 21085609; PubMed Central PMCID: PMC2978724.
  • Di-Blasi T, Lobo AR, Nascimento LM, et al. The Flagellar protein FLAG1/SMP1 is a candidate for Leishmania–sand fly interaction. Vector Borne Zoonotic Dis. 2015;15(3):202–209.
  • Myskova J, Svobodova M, Beverley SM, et al. A lipophosphoglycan-independent development of Leishmania in permissive sand flies. Microbes Infect. 2007;9(3):317–324.
  • Rawal R, Vijay S, Kadian K, et al. Towards a proteomic catalogue and differential annotation of salivary gland proteins in blood fed malaria vector Anopheles culicifacies by mass spectrometry. PloS One. 2016;11(9):e0161870.
  • Nugent PG, Karsani SA, Wait R, et al. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol. 2004;136(1):51–62.
  • Pawar H, Sahasrabuddhe NA, Renuse S, et al. A proteogenomic approach to map the proteome of an unsequenced pathogen–leishmania donovani. Proteomics. 2012;12(6):832–844.
  • Pawar H, Renuse S, Khobragade SN, et al. Neglected tropical diseases and omics science: proteogenomics analysis of the promastigote stage of Leishmania major parasite. Omics. 2014;18(8):499–512.
  • Walker J, Vasquez -J-J, Gomez MA, et al. Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Mol Biochem Parasitol. 2006;147(1):64–73.
  • Bente M, Harder S, Wiesgigl M, et al. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics. 2003;3(9):1811–1829.
  • Thiel M, Bruchhaus I. Comparative proteome analysis of Leishmania donovani at different stages of transformation from promastigotes to amastigotes. Med Microbiol Immunol. 2001;190(1):33–36.
  • Tsigankov P, Gherardini PF, Helmer-Citterich M, et al. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res. 2013;12(7):3405–3412.
  • Tsigankov P, Gherardini PF, Helmer-Citterich M, et al. Regulation dynamics of Leishmania differentiation: deconvoluting signals and identifying phosphorylation trends. Mol Cell Proteomics. 2014;13(7):1787–1799.
  • Foth B, Piani A, Curtis JM, et al. Leishmania major proteophosphoglycans exist as membrane-bound and soluble forms and localise to the cell membrane, the flagellar pocket and the lysosome. Int J Parasitol. 2002;32(14):1701–1708.
  • Yao C, Li Y, Donelson JE, et al. Proteomic examination of Leishmania chagasi plasma membrane proteins: contrast between avirulent and virulent (metacyclic) parasite forms. PROTEOMICS-Clinical Appl. 2010;4(1):4–16.
  • Mojtahedi Z, Clos J, Kamali-Sarvestani E. Leishmania major: identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Exp Parasitol. 2008;119(3):422–429.
  • Brotherton M-C, Racine G, Ouameur AA, et al. Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res. 2012;11(8):3974–3985.
  • Kamoun-Essghaier S, Guizani I, Strub JM, et al. Proteomic approach for characterization of immunodominant membrane-associated 30-to 36-kilodalton fraction antigens of Leishmania infantum promastigotes, reacting with sera from mediterranean visceral leishmaniasis patients. Clin Diagn Lab Immunol. 2005;12(2):310–320.
  • Lynn MA, Marr AK, McMaster WR. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteomics. 2013;82:179–192.
  • de Oliveira AH, Ruiz JC, Cruz AK, et al. Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(3):300–308.
  • Foucher AL, Papadopoulou B, Ouellette M. Prefractionation by digitonin extraction increases representation of the cytosolic and intracellular proteome of Leishmania i nfantum. J Proteome Res. 2006;5(7):1741–1750.
  • Maslov DA, Spremulli LL, Sharma MR, et al. Proteomics and electron microscopic characterization of the unusual mitochondrial ribosome-related 45S complex in Leishmania tarentolae. Mol Biochem Parasitol. 2007;152(2):203–212.
  • Ridlon L, Škodová I, Pan S, et al. The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei. J Biol Chem. 2013;288(46):32963–32978.
  • Kovtun O, Mureev S, Johnston W, et al. Towards the construction of expressed proteomes using a Leishmania tarentolae based cell-free expression system. PLOS One. 2010;5(12):e14388.
  • Nandan D, Yi T, Lopez M, et al. Leishmania EF-1α activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem. 2002;277(51):50190–50197.
  • Silverman JM, Chan SK, Robinson DP, et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biology. 2008;9(2):R35.
  • Atayde VD, Aslan H, Townsend S, et al. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep. 2015 Nov 3;13(5):957–967. PubMed PMID: 26565909; PubMed Central PMCID: PMC4644496.
  • Rittig M, Bogdan C. Leishmania–host-cell interaction: complexities and alternative views. Parasitol Today. 2000;16(7):292–297.
  • De Almeida M, Vilhena V, Barral A, et al. Leishmanial infection: analysis of its first steps. A review. Mem Do Inst Oswaldo Cruz. 2003;98(7):861–870.
  • Gregory D, Olivier M. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology. 2005;130(S1):S27–S35.
  • Tonui WK, Mejia JS, Hochberg L, et al. Immunization with Leishmania major exogenous antigens protects susceptible BALB/c mice against challenge infection with L. Major. Infection and Immunity. 2004;72(10):5654–5661.
  • Tonui WK, Titus RG. Cross-protection against Leishmania donovani but not L. Braziliensis caused by vaccination with L. major soluble promastigote exogenous antigens in BALB/c mice. Am J Trop Med Hyg. 2007;76(3):579–584.
  • Lemesre J-L, Holzmuller P, Gonçalves RB, et al. Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial. Vaccine. 2007;25(21):4223–4234.
  • Bras-Gonçalves R, Petitdidier E, Pagniez J, et al. Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum. . Infect Genet Evol. 2014;24:1–14.
  • Petitdidier E, Pagniez J, Papierok G, et al. Recombinant forms of Leishmania amazonensis excreted/secreted promastigote surface antigen (PSA) induce protective immune responses in dogs. PLoS Negl Trop Dis. 2016;10(5):e0004614.
  • Braga MS, Neves LX, Campos JM, et al. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol. 2014;195(1):43–53.
  • Sun H, Palaniswamy SK, Pohar TT, et al. MPromDb: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data. Nucleic Acids Res. 2006;34(suppl 1):D98–D103.
  • Yamamoto YY, Obokata J. PPDB: a plant promoter database. Nucleic Acids Res. 2007;36(suppl_1):D977–D981.
  • Jones P, Côté RG, Martens L, et al. PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 2006;34(suppl 1):D659–D663.
  • Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J Proteome Res. 2004;3(6):1234–1242.
  • Desiere F, Deutsch EW, King NL, et al. The peptideatlas project. Nucleic Acids Res. 2006;34(suppl 1):D655–D658.
  • Mathivanan S, Ahmed M, Ahn NG, et al. Human Proteinpedia enables sharing of human protein data. Nat Biotechnol. 2008;26(2):164–167.
  • Zhang Y, Zhang Y, Adachi J, et al. MAPU: max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes. Nucleic Acids Res. 2006;35(suppl_1):D771–D779.
  • Fälth M, Savitski MM, Nielsen ML, et al. SwedCAD, a database of annotated high-mass accuracy MS/MS spectra of tryptic peptides. J Proteome Res. 2007;6(10):4063–4067.
  • McLaughlin T, Siepen JA, Selley J, et al. PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns. Nucleic Acids Res. 2006;34(suppl 1):D649–D654.
  • Megger DA, Bracht T, Meyer HE, et al. Label-free quantification in clinical proteomics. Biochimica Et Biophysica Acta (Bba)-Proteins and Proteomics. 2013;1834(8):1581–1590.
  • Wordwide Protein Data Bank [internet]. Worldwide Protein Data Bank Foundation. [cited 2018 Mar 3]. Available from: http://www.wwpdb.org/
  • Dynameomics [internet]. University of Washington: Daggett group; cited 2018 Mar 3. Available from: http://www.dynameomics.org/
  • ModBase [internet]. Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biomedical Research, Mission Bay Campus, Byers Hall, University of California: Ben Webb; [cited 2018 Mar 3]. Available from: http://salilab.org/mod
  • OPM database[internet]. University of Michigan,MI,USA:National Science Foundation; [cited 2018 Mar 3]. Available from: http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/
  • SCOP2 [internet]. Cambridge,UK: MRC, Laboratory of Molecular Biology; [cited 2018 Mar 3]. Available from: http://scop2.mrc-lmb.cam.ac.uk/
  • SWISS-MODEL[internet]. Switzerland: Biozentrum, University of Basel,The Centre for Molecular Life Sciences; [cited 2018 Mar 3]. Available from: https://swissmodel.expasy.org/repository/
  • TOPSAN-TOPSAN [internet]. California:The Joint Centre for Structural Genomics; [cited 2018 Mar 3]. Available from: http://www.topsan.org/
  • TrEMBL/SWISS-PROT [internet]. Cambridge and Geneva: EMBL-EBIand SIB;[cited 2018 Mar 3]. Available from: http://www.mrc-lmb.cam.ac.uk/genomes/madanm/pres/swiss2.htm
  • UniProt [internet].Bethesda: NIH; [cited 2018 Mar 3]. Available from: http://www.uniprot.org/
  • Plasma proteome database [internet].Banglore:Institute of Bioinformatics;[cited 2018 Mar 4]. Available from: http://www.plasmaproteomedatabase.org/.
  • Yale protein expression database [internet]. New Haven: Yale School of Medicine and W.M. Keck Foundation; [cited 2018]. Available from: http://yped.med.yale.edu/repository/
  • MOPED [internet].Washington:Seattle Children’s Research Institute; [cited 2018 Mar 4]. Available from: http://moped.proteinspire.org
  • Expression Atlas [internet].Hinxton: EMBL-EBI;[cited 2018 Mar 4]. Available from: https://omictools.com/expression-atlas-tool
  • Kahn Dynamic Proteomics database [internet].Rehovot,Israel: Weizmann Institute of Science;[cited 2018 Mar 4]. Available from: http://www.weizmann.ac.il/mcb/UriAlon/DynamProt
  • Human Proteinpedia [internet].Baltimore and Banglore: JohnHopkins University and Institute of Bioinformatics; [cited 2018 Mar 4]. Available from: http://www.humanproteinpedia.org/
  • PRIDE[internet]. Hinxton: European Bioinformatics Institute;[cited 2018 Mar 4]. Available from: http://www.ebi.ac.uk/pride/archive/
  • PaxDb[internet].Zurich: SIB and University of Zurich; [cited 2018 Mar 4]. Available from: http://pax-db.org/
  • Human Protein Atlas [internet]. Stockholm: Knut and Alice Wallenburg Foundation; [cited 2018 Mar 4]. Available from: http://proteinatlas.org/
  • DIP, Database of Interacting Proteins [internet].Los Angeles: University of California; [cited 2018 Mar 4]. Available from: http://dip.doe-mbi.ucla.edu/dip/Main.cgi
  • Human protein interaction database [internet]. Inchon: Biocomputing lab,Inha University; [cited 2018 Mar 4]. Available from: http://www.hpid.org
  • Open Proteome Database [internet]. [cited 2018 Mar 4]. Available from: http://bioinformatics.icmb.utexas.edu/OPD/
  • SBEAMS [internet]. Washington:Institute for System Biology; [cited 2018 Mar 4]. Available from: http://www.sbeams.org/
  • HUPO-PSI [internet].Vancouver, Canada:Human Proteome Organization; [cited 2018 Mar 4]. Available from: http://www.hupo.org/
  • SWISS-2DPAGE[internet].Geneva and Lausanne: CentralClinical Chemistry Laboratory of Geneva University Hospital and SIB; [cited 2018 Mar 4]. Available from: http://www.expasy.ch/ch2d/
  • BioGRID [internet]. Bethesda,: NIH; [cited 2018 Mar 4]. Available from: http://thebiogrid.org
  • The biomolecular interaction network database [internet].Toranto and Singapore: the Blueprint Initiative of Mount Sinai and The Blueprint Initiative Asia; [cited 2018 Mar 4]. Available from: http://www.bind.ca
  • IntAct, molecular interaction database [internet].Hinxton: EMBL-EBI; [cited 2018 Mar 4]. Available from: http://www.ebi.ac.uk/intact
  • Molecular INTeraction database [internet]. Rome:Elixir Core Data Resource; [cited 2018 Mar 4]. Available from: http://mint.bio.uniroma2.it/mint
  • Park D, Lee S, Bolser D, et al. Comparative interactomics analysis of protein family interaction networks using PSIMAP (protein structural interactome map). Bioinformatics. 2005;21(15):3234–3240.
  • Rao A, Yeleswarapu SJ, Raghavendra G, et al. PlasmoID: A P. Falciparum information discovery tool. In Silico Biol. 2009;9(4):195–202.
  • Flórez AF, Park D, Bhak J, et al. Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics. 2010;11(1):484.
  • da Silva Santos C, Attarha S, Saini RK, et al. Proteome profiling of human cutaneous leishmaniasis lesion. J Investigative Dermatol. 2015;135(2):400–410.
  • Menezes-Souza D, de Oliveira Mendes TA, de Souza Gomes M, et al. Epitope mapping of the HSP83. 1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clin Vaccine Immunol. 2014;21(7):949–959.
  • Menezes-Souza D, de Oliveira Mendes TA, Nagem RAP, et al. Mapping B-cell epitopes for the peroxidoxin of Leishmania (Viannia) braziliensis and its potential for the clinical diagnosis of tegumentary and visceral leishmaniasis. PloS One. 2014;9(6):e99216.
  • Saffari B, Mohabatkar H. Computational analysis of cysteine proteases (Clan CA, Family C1) of Leishmania major to find potential epitopic regions. Genomics Proteomics Bioinformatics. 2009;7(3):87–95.
  • Pereira BA, Silva FS, Rebello KM, et al. In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection. BMC Immunol. 2011;12(1):44.
  • Chávez-Fumagalli MA, Schneider MS, Lage DP, et al. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. Hypothetical proteins identified by immunoproteomics. Exp Parasitol. 2017;176:66–74.
  • Goto Y, Coler RN, Reed SG. Bioinformatic identification of tandem repeat antigens of the Leishmania donovani complex. Infect Immun. 2007;75(2):846–851.
  • Brito RC, Guimarães FG, Velloso JP, et al. Immunoinformatics features linked to Leishmania vaccine development: data integration of experimental and in silico studies. Int J Mol Sci. 2017;18(2):371.
  • John L, John GJ, Kholia T. A reverse vaccinology approach for the identification of potential vaccine candidates from Leishmania spp. Appl Biochem Biotechnol. 2012;167(5):1340–1350.
  • Zarean M, Maraghi S, Hajjaran H, et al. Comparison of proteome profiling of two sensitive and resistant field Iranian isolates of Leishmania major to Glucantime® by 2-dimensional electrophoresis. Iran J Parasitol. 2015;10(1):19.
  • Moreira D, Pescher P, Laurent C, et al. Phosphoproteomic analysis of wild‐type and antimony‐resistant Leishmania braziliensis lines by 2D‐DIGE technology. Proteomics. 2015;15(17):2999–3019.
  • Vacchina P, Norris-Mullins B, Carlson E, et al. A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani. Parasit Vectors. 2016;9(1):621.
  • Johnson R, Campbell-Bright S, Ralph H, et al. Proteomic analysis of miltefosine-resistant Leishmania reveals the possible involvement of eukaryotic initiation factor 4A (eIF4A). Int J Antimicrobial Agents. 2008;31:581–592.
  • Vincent IM, Racine G, Légaré D, et al. Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes. 2015;3(4):328–346.
  • Das S, Shah P, Baharia RK, et al. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7(12):e2527.
  • Das S, Shah P, Tandon R, et al. Over-expression of cysteine leucine rich protein is related to SAG resistance in clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2015;9(8):e0003992.
  • Brotherton M-C, Bourassa S, Leprohon P, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One. 2013;8(11):e81899.
  • Carnielli JB, de Andrade HM, Pires SF, et al. Proteomic analysis of the soluble proteomes of miltefosine-sensitive and-resistant Leishmania infantum chagasi isolates obtained from Brazilian patients with different treatment outcomes. J Proteomics. 2014;108:198–208.
  • Brotherton M-C, Bourassa S, Légaré D, et al. Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol. 2014;4(2):126–132.
  • Imbert L, Cojean S, Libong D, et al. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism. Biomed Pharmacother. 2014;68(7):893–897.
  • Robinson A, Robson M, Harrison AP, et al. A new technique for differentiation of hemoglobin. J Lab Clin Med. 1957;50(5):745–752.
  • Elgstoen KB, Jellum E. Capillary electrophoresis for diagnosis of metabolic disease. Electrophoresis. 1997;18(10):1857–1860.
  • Schmerr MJ, Cutlip RC, Jenny A. Capillary isoelectric focusing of the scrapie prion protein. J Chromatogr. 1998;802(1):135–141.
  • Duarte MC, Pimenta DC, Menezes-Souza D, et al. Proteins selected in Leishmania (Viannia) braziliensis by an immunoproteomic approach with potential serodiagnosis applications for tegumentary leishmaniasis. Clin Vaccine Immunol. 2015;22(11):1187–1196.
  • Lima B, Pires S, Fialho L, et al. A proteomic road to acquire an accurate serological diagnosis for human tegumentary leishmaniasis. J Proteomics. 2017;151:174–181.
  • Costa MM, Andrade HM, Bartholomeu DC, et al. Analysis of Leishmania chagasi by 2-D difference gel eletrophoresis (2-D DIGE) and immunoproteomic: identification of novel candidate antigens for diagnostic tests and vaccine. J Proteome Res. 2011;10(5):2172–2184.
  • Tebourski F, El Gaied A, Louzir H, et al. Identification of an immunodominant 32-kilodalton membrane protein of Leishmania donovani infantum promastigotes suitable for specific diagnosis of mediterranean visceral leishmaniasis. J Clin Microbiol. 1994;32(10):2474–2480.
  • Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. The Lancet. 2006;368(9540):1012–1021.
  • Papadopoulos MC, Abel PM, Agranoff D, et al. A novel and accurate diagnostic test for human African trypanosomiasis. The Lancet. 2004;363(9418):1358–1363.
  • Hettick JM, Kashon ML, Simpson JP, et al. Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2004;76(19):5769–5776.
  • Bag AK, Saha S, Sundar S, et al. Comparative proteomics and glycoproteomics of plasma proteins in Indian visceral leishmaniasis. Proteome Sci. 2014;12(1):48.
  • Petricoin EF, Zoon KC, Kohn EC, et al. Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov. 2002;1(9):683–695.
  • Zhang Y, Fonslow BR, Shan B, et al. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–2394.
  • Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome: a method for high‐resolution display of urinary proteins on two‐dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4(4):1159–1174.
  • Gupta SK, Sisodia BS, Sinha S, et al. Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigotes. Proteomics. 2007;7(5):816–823.
  • Tripathi P, Gupta S, Sinha S, et al. Prophylactic efficacy of high‐molecular‐weight antigenic fractions of a recent clinical isolate of Leishmania donovani against visceral leishmaniasis. Scand J Immunol. 2008;68(5):492–501.
  • Drummelsmith J, Girard I, Trudel N, et al. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem. 2004 Aug 6;279(32):33273–33280. PubMed PMID: 15190060.
  • Jeffery DA, Bogyo M. Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol. 2003 Feb;14(1):87–95. PubMed PMID: 12566007.
  • Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem. 2008;77:383–414. PubMed PMID: 18366325.
  • Cox J, Neuhauser N, Michalski A, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–1805.
  • Muñoz J, Heck AJ. From the human genome to the human proteome. Angew Chem Int Ed. 2014;53(41):10864–10866.
  • Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics. 2010;9(10):2252–2261.
  • Geiger T, Cox J, Mann M. Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics. 2010 Oct;9(10):2252–2261. PubMed PMID: 20610777; PubMed Central PMCID: PMC2953918.
  • Addona TA, Shi X, Keshishian H, et al. A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol. 2011;29(7):635–643.
  • Cao Z, Tang H-Y, Wang H, et al. Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J Proteome Res. 2012;11(6):3090–3100.
  • Paczesny S, Braun TM, Levine JE, et al. Elafin is a biomarker of graft-versus-host disease of the skin. Sci Transl Med. 2010;2(13):13ra2–13ra2.
  • Kuzyk MA, Parker CE, Domanski D, et al. Development of MRM-based assays for the absolute quantitation of plasma proteins. Methods Mol Biol. 2013;1023:53–82. PubMed PMID: 23765619.
  • Geyer PE, Kulak NA, Pichler G, et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2(3):185–195.
  • Schmucker D, Clemens JC, Shu H, et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000 Jun 9;101(6):671–684. PubMed PMID: 10892653.
  • Hancock WS, Wu SL, Stanley RR, et al. Publishing large proteome datasets: scientific policy meets emerging technologies. Trends Biotechnol. 2002;20(12):s39–s44.
  • Tucker CL, Gera JF, Uetz P. Towards an understanding of complex protein networks. Trends Cell Biol. 2001;11(3):102–106.
  • Eilbeck K, Brass A, Paton NW, et al., editors. INTERACT: an object oriented protein-protein interaction database. ISMB proceedings; 1999; AAAI.
  • Basik M, Mousses S, Trent J. Integration of genomic technologies for accelerated cancer drug development. Biotechniques. 2003;35(3):580–593.
  • Hegde PS, White IR, Debouck C. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol. 2003;14(6):647–651.
  • Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide disease markers. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 15;803(1):27–40. PubMed PMID: 15025996.
  • Brand S, Hahner S, Ketterlinus R. Protein profiling and identification in com-plex biological samples using LC-MALDI. Drug Plus Int. 2005;6-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.