365
Views
2
CrossRef citations to date
0
Altmetric
Review

Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification

ORCID Icon
Pages 555-568 | Received 13 Jun 2018, Accepted 12 Jul 2018, Published online: 20 Jul 2018

References

  • Juárez P, Sanz L, Calvete JJ. Snake venomics: characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N-terminal sequencing, and tandem mass spectrometry analysis. Proteomics. 2004;4:327–338.
  • Calvete JJ. Snake venom disintegrins and disintegrin-like domains: soluble antagonists and cellular ligands of integrin receptors. In: Eble J, Kühn K, eds. Integrin-Ligand interactions. Austin, Texas: Landes Co. Biomedical Publishers; 1997. p. 157–173. ISBN: 3-540-62539-9.
  • Juárez P, Comas I, González-Candelas F, et al. Evolution of snake venom disintegrins by positive Darwinian selection. Mol Biol Evol. 2008;25:2391–2407.
  • Carbajo RJ, Sanz L, Perez A, et al. NMR structure of bitistatin – a missing piece in the evolutionary pathway of snake venom disintegrins. FEBS J. 2015;282:341–360.
  • Horton ER, Humphries JD, James J, et al. The integrin adhesome network at a glance. J Cell Sci. 2016;129:4159–4163.
  • Brahma RK, McCleary RJ, Kini RM, et al. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon. 2015;93:1–10.
  • Kaas Q, Craik DJ. Bioinformatics-aided venomics. Toxins. 2015;7:2159–2187.
  • Calvete JJ. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics. 2011;8:739–758.
  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.
  • Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics. 2014;11:315–329.
  • Zelanis A, Tashima AK. Unraveling snake venom complexity with ‘omics’ approaches: challenges and perspectives. Toxicon. 2014;87:131–134.
  • Eichberg S, Sanz L, Calvete JJ, et al. Constructing comprehensive venom proteome reference maps for integrative venomics. Expert Rev Proteomics. 2015;12:557–573.
  • Eyers CE, Gaskell SJ, editors. Quantitative proteomics, Royal Society of Chemistry, London, UK. 2014. p. ASIN: B00QCKOJ68.
  • Fox JW, Serrano SM. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics. 2008;8:909–920.
  • Tasoulis T, Isbister GK, Review A. Database of snake venom proteomes. Toxins. 2017;9:E290.
  • Natale M, Caiazzo A, Bucci EM, et al. A novel Gaussian extrapolation approach for 2D gel electrophoresis saturated protein spots. Genomics Proteomics Bioinformatics. 2012;10:336–344.
  • Blein-Nicolas M, Zivy M. Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. Biochim Biophys Acta Proteins Proteomics. 2016;1864:883–895.
  • Jarnuczak AF, Lee DC, Lawless C, et al. Analysis of intrinsic peptide detectability via integrated label-free and SRM-based absolute quantitative proteomics. J Proteome Res. 2016;15:2945–2959.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404:939–965.
  • Old WM, Meyer-Arendt K, Aveline-Wolf L, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–1502.
  • Goeminne LJE, Gevaert K, Clement L. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: a tutorial with MSqRob. J Proteomics. 2018;171:23–36.
  • O’Connell JD, Paulo JA, O’Brien JJ, et al. Proteome-wide evaluation of two common protein quantification methods. J Proteome Res. 2018;17:1934–1942.
  • Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154–1169.
  • Quaglia M, Pritchard C, Hall Z, et al. Amine-reactive isobaric tagging reagents: requirements for absolute quantification of proteins and peptides. Anal Biochem. 2008;379:164–169.
  • Wiese S, Reidegeld KA, Meyer HE, et al. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics. 2007;7:340–350, Erratum in: Proteomics 7, 1004 (2007).
  • Zelanis A, Tashima AK, Pinto AF, et al. Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011;11:4218–4228.
  • Gao JF, Qu YF, Zhang XQ, et al. Neonate-to-adult transition of snake venomics in the short-tailed pit viper, Gloydius brevicaudus. J Proteomics. 2013;84:148–157.
  • Brun V, Masselon C, Garin J, et al. Isotope dilution strategies for absolute quantitative proteomics. J Proteomics. 2009;72:740–749.
  • Villanueva J, Carrascal M, Abian J. Isotope dilution mass spectrometry for absolute quantification in proteomics: concepts and strategies. J Proteomics. 2014;96:184–199.
  • Houk RS, Tassel VA, Flesch GD, et al. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal Chem. 1980;53:2283–2289.
  • Becker JS, Spectrometry IM. Principles and applications. John Wiley & Sons Ltd.:Chichester, UK;2007. p. 118–176. ISBN: 978-0-470-01200-0.
  • Bettmer J, Montes-Bayón M, Ruiz Encinar J, et al. The emerging role of ICP-MS in proteomic analysis. J Proteomics. 2009;72:989–1005.
  • Sanz-Medel A, Montes-Bayón M, Bettmer J, et al. ICP-MS for absolute quantification of proteins for heteroatom-tagged, targeted proteomics. Trends Anal Chem. 2012;40:52–63.
  • Calderón-Celis F, Sanz-Medel A, Encinar JR. Universal absolute quantification of biomolecules using element mass spectrometry and generic standards. Chem Commun. 2018;54:904–907.
  • Diez Fernández S, Sugishama N, Ruiz Encinar J, et al. Triple quad ICPMS (ICPQQQ) as a new tool for absolute quantitative proteomics and phosphoproteomics. Anal Chem. 2012;84:5851–5857.
  • Rappel C, Schaumlöffel D. The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal Bioanal Chem. 2008;390:605–615.
  • Reeks TA, Fry BG, Alewood PF. Privileged frameworks from snake venom. Cell Mol Life Sci. 2015;72:1939–1958.
  • Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom. 2007;42:1405–1414.
  • Calderón-Celis F, Diez-Fernández S, Costa-Fernández JM, et al. Elemental mass spectrometry for absolute intact protein quantification without protein-specific standards: application to snake venomics. Anal Chem. 2016;88:9699–9706.
  • Calderón-Celis F, Cid-Barrio L, Encinar JR, et al. Absolute venomics: absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics. 2017;164:33–42.
  • Calderón-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2017;1–23. DOI:10.1002/mas.21542,
  • Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, et al. Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta Part B At Spectrosc. 2005;60:151–207.
  • Calvete JJ. The expanding universe of mass analyzer configurations for biological analysis. Meth Mol Biol. 2014;1072:61–81.
  • Senko MW, Remes PM, Canterbury JD, et al. Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem. 2013;85:11710–11714.
  • Calvete JJ. Venomics: integrative venom proteomics and beyond. Biochem J. 2017;474:611–634.
  • Casewell NR, Wüster W, Vonk FJ, et al. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–229.
  • Fry BG, Vidal N, Norman JA, et al. Early evolution of the venom system in lizards and snakes. Nature. 2006;439:584–588.
  • Jungblut PR, Schlüter H. Towards the analysis of protein species: an overview about strategies and methods. Amino Acids. 2011;41:219–222.
  • Patrie SM. Top-down mass spectrometry: proteomics to Proteoforms. Modern proteomics-sample preparation, analysis and practical applications. Mirzaei H, Carrasco M, editors. Springer International Publishers, Switzerland. Advances in experimental medicine and biology. Vol. 919. 2016. DOI:10.1007/978-3-319-41448-5_8
  • Denisov E, Damoc E, Lange O, et al. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int J Mass Spectrom. 2012;27:80–85.
  • Scheffler K, Viner R, Damoc E. High resolution top-down experimental strategies on the Orbitrap platform. J Proteomics. 2018;175:42–55.
  • Lorenzatto KR, Kim K, Ntai I, et al. Top down proteomics reveals mature proteoforms expressed in subcellular fractions of the Echinococcus granulosus preadult stage. J Proteome Res. 2015;14:4805–4814.
  • Valaskovic GA, Kelleher NL, McLafferty FW. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science. 1996;273:1199–1202.
  • Bogdanov B, Smith RD. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev. 2005;24:168–200.
  • Petras D, Heiss P, Süssmuth RD, et al. Venom proteomics of Indonesian king cobra, Ophiophagus hannah: integrating top-down and bottom-up approaches. J Proteome Res. 2015;14:2539–2556.
  • Melani RD, Skinner OS, Fornelli L, et al. Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Mol Cell Proteomics. 2016;15:2423–2434.
  • Göçmen B, Heiss P, Petras D, et al. Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon. 2015;107:163–174.
  • Petras D, Heiss P, Harrison RA, et al. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J Proteomics. 2016;146:148–164.
  • Ainsworth S, Petras D, Engmark M, et al. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J Proteomics. 2018;172:173–189.
  • Pla D, Petras D, Saviola AJ, et al. Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. J Proteomics. 2018;174:71–84.
  • Ntai I, Kim K, Fellers RT, et al. Applying label-free quantitation to top down proteomics. Anal Chem. 2014;86:4961–4968.
  • Dole M, Mach LL, Hines RL, et al. Molecular beams of macroions. J Chem Phys. 1968;49:2240–2249.
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246:64–71.
  • Fenn JB. Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed Engl. 2003;42:3871–3894.
  • Henry KD, Williams ER, Wang BH, et al. Fourier-transform mass spectrometry of large molecules by electrospray ionization. Proc Natl Acad Sci U S A. 1989;86:9075–9078.
  • Henry KD, McLafferty FW. Electrospray ionization with Fourier-transform mass spectrometry. Charge state assignment from resolved isotopic peaks. Org Mass Spectrom. 1990;25:490–492.
  • Henry KD, Quinn JP, McLafferty FW. High-resolution electrospray mass spectra of large molecules. J Am Chem Soc. 1991;113:5447–5449.
  • Loo JA, Quinn JP, Ryu SI, et al. High resolution tandem mass spectrometry of large biomolecules. Proc Natl Acad Sci U S A. 1992;89:286–289.
  • McLafferty F. High-resolution tandem FT mass spectrometry above 10 kDa. Acc Chem Res. 1994;27:379–386.
  • McLafferty FW. A century of progress in molecular mass spectrometry. Annu Rev Anal Chem. 2011;4:1–22.
  • Fenn JB. Electrospray ionization mass spectrometry: how it all began. J Biomol Tech. 2002;13:101–118.
  • Dang X, Scotcher J, Wu S, et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics. 2014;14:1130–1140.
  • Toby TK, Fornelli L, Kelleher NL. Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem. 2016;9:499–519.
  • Vonk FJ, Casewell NR, Henkel CV, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA. 2013;110:20651–20656.
  • Gutiérrez JM, Calvete JJ, Habib AG, et al. Snakebite envenoming. Nat Rev Dis Primers. 2017;3:17079.
  • Utkin Y, Sunagar K, Jackson T, et al. Three-finger toxins (3FTxs). In: Fry BG, editors. Venomous reptiles and their toxins: evolution, pathophysiology and biodiscovery. Oxford: Oxford University Press; 2015. p. 215–227.
  • Harvey AL, Robertson B. Dendrotoxins: structure-activity relationships and effects on potassium ion channels. Curr Med Chem. 2004;11:3065–3072.
  • Jackson TN, Koludarov I, Ali SA, et al. Rapid radiations and the race to redundancy: an investigation of the evolution of australian elapid snake venoms. Toxins. 2016;8:E309.
  • Lomonte B, Rey-Suárez P, Fernández J, et al. Venoms of Micrurus coral snakes: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7–25.
  • Sunagar K, Jackson TN, Undheim EA, et al. Three-fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins. 2013;5:2172–2208.
  • Skinner OS, Lhf DV, Catherman AD, et al. Native gelfree: a new separation technique for biomolecular assemblies. Anal Chem. 2015;87:3032–3038.
  • Savidge JA. Food habits of Boiga irregularis, an introduced predator on Guam. J Herpetol. 1988;22:275–282.
  • Weinstein SA, Chiszar D, Bell RC, et al. Lethal potency and fractionation of Duvernoy’s secretion from the Brown Treesnake, Boiga irregularis. Toxicon. 1991;29:401–407.
  • Pawlak J, Mackessy SP, Sixberry NM, et al. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23:534–545.
  • Mackessy SP, Sixberry NM, Heyborne WH, et al. Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47:537–548.
  • The consortium for top-down Proteomics.[cited 2018 June]. Available from: http://www.topdownproteomics.org/resources/software
  • Kou Q, Xun L, Liu X. TopPIC: a software tool for top-down mass spectrometry based proteoform identification and characterization. Bioinformatics. 2016;32:3495–3497.
  • Cai W, Guner H, Gregorich ZR, et al. MASH suite pro: a comprehensive software tool for top-down proteomics. Mol Cell Proteomics. 2016;15:703–714.
  • Harvey AL. Toxins and drug discovery. Toxicon. 2014;92:193–200.
  • King GF, editor. Venoms to drugs: venom as a source for the development of human therapeutics. Cambridge (UK): Royal Society of Chemistry Publishing; 2015. ISBN: 978-1-84973-663-3.
  • Pla D, Sanz L, Sasa M, et al. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics. 2017;152:1–12.
  • Arbuckle K, Rodríguez de la Vega RC, Casewell NR. Coevolution takes the sting out of it: evolutionary biology and mechanisms of toxin resistance in animals. Toxicon. 2017;140:118–131.
  • Panagides N, Jackson TN, Ikonomopoulou MP, et al. How the cobra got its flesh-eating venom: cytotoxicity as a defensive innovation and its co-evolution with hooding, aposematic marking, and spitting. Toxins. 2017;9:E103.
  • Cipriani V, Debono J, Goldenberg J, et al. Correlation between ontogenetic dietary shifts and venom variation in Australian brown snakes (Pseudonaja). Comp Biochem Physiol C Toxicol Pharmacol. 2017;197:53–60.
  • Goldenberg J, Cipriani V, Jackson TNW, et al. Proteomic and functional variation within black snake venoms (Elapidae: pseudechis). Comp Biochem Physiol C Toxicol Pharmacol. 2018;205:53–61.
  • Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 2013;13:93.
  • Shine R, Covacevich J. Ecology of highly venomous snakes: the Australian genus Oxyuranus (Elapidae). J Herpetol. 1983;17:60–69.
  • Laustsen AH, Lohse B, Lomonte B, et al. Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon. 2015;104:43–45.
  • Calvete JJ, Rodríguez Y, Quesada-Bernat S, et al. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon. 2018;148:107–122.
  • Huang T, Wang J, Yu W, et al. Protein inference: a review. Brief Bioinform. 2012;13:586–614.
  • Park J, Piehowski PD, Wilkins C, et al. Informed-proteomics: open-source software package for top-down proteomics. Nat Methods. 2017;14:909–914.
  • Fornelli L, Durbin KR, Fellers RT, et al. Advancing top-down analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer. J Proteome Res. 2017;16:609−18.
  • Anderson LC, DeHart CJ, Kaiser NK, et al. Identification and characterization of human proteoforms by top-down LC-21 Tesla FT-ICR mass spectrometry. J Proteome Res. 2017;16:1087–1096.
  • Greer SM, Brodbelt JS. Top-down characterization of heavily modified histones using 193 nm ultraviolet photodissociation mass spectrometry. J Proteome Res. 2018;17:1138–1145.
  • Gargano AFG, Roca LS, Fellers RT, et al. Capillary HILIC-MS: a new tool for sensitive top-down proteomics. Anal Chem. 2018;90:6601–6609.
  • McCool EN, Lubeckyj RA, Shen X, et al. Deep top-down proteomics using capillary zone electrophoresis-tandem mass spectrometry: identification of 5700 proteoforms from the Escherichia coli proteome. Anal Chem. 2018;90:5529–5533.
  • Lermyte F, Valkenborg D, Loo JA, et al. Radical solutions: principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. Mass Spectrom Rev. 2018. DOI:10.1002/mas.21560,
  • Li H, Nguyen HH, Ogorzalek Loo RR, et al. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat Chem. 2018;10:139–148.
  • Kou Q, Wu S, Liu X. Systematic evaluation of protein sequence filtering algorithms for proteoform identification using top-down mass spectrometry. Proteomics. 2018;18. DOI:10.1002/pmic.201700306,
  • Chen B, Brown KA, Lin Z, et al. Top-down proteomics: ready for prime time? Anal.Chem. 2018;90:110–127.
  • Daly M, Gibbs HL. Integrating perspectives on animal venom diversity: an introduction to the symposium. Integr Comp Biol. 2016;56:934–937.
  • Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005;130:442–465.
  • Sanz-Medel A. ICP-MS for multiplex absolute determinations of proteins. Anal Bioanal Chem. 2010;398:1853–1859.
  • Melani RD, Nogueira FCS, Domont GB. It is time for top-down venomics. J Venom Anim Toxins Incl Trop Dis. 2017;23:44.
  • Calvete JJ, Petras D, Calderón-Celis F, et al. Protein- species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis. 2017;23:1.
  • Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, et al. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics. 2018;181:60–72.
  • Kerkkamp HM, Kini RM, Pospelov AS, et al. Snake genome sequencing: results and future prospects. Toxins. 2016;8:E360.
  • Lauridsen LP, Laustsen AH, Lomonte B, et al. Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps). J Proteomics. 2016;136:248–261.
  • Lauridsen LP, Laustsen AH, Lomonte B, et al. Exploring the venom of the forest cobra snake: toxicovenomics and antivenom profiling of Naja melanoleuca. J Proteomics. 2017;150:98–108.
  • Calvete JJ, Sanz L, Pla D, et al. Omics meets biology: application to the design and preclinical assessment of antivenoms. Toxins. 2014;6:3388–3405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.