1,010
Views
1
CrossRef citations to date
0
Altmetric
Review

Applications of MALDI-TOF mass spectrometry in clinical proteomics

, , , , , & show all
Pages 683-696 | Received 09 Jan 2017, Accepted 25 Jul 2018, Published online: 09 Aug 2018

References

  • Crutchfield CA, Thomas SN, Sokoll LJ, et al. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016;13:1.
  • Latosinska A, Frantzi M, Vlahou A, et al. Clinical proteomics for precision medicine: the bladder cancer case. PROTEOMICS–Clinical Appl. 2018;1:1700074.
  • Cho Y-T, Su H, Wu W-J, et al. Chapter six-biomarker characterization by MALDI–TOF/MS. Adv Clin Chem. 2015;69:209–254.
  • Patel TS, Kaakeh R, Nagel JL, et al. Cost analysis of implementing matrix-assisted laser desorption ionization–time of flight mass spectrometry plus real-time antimicrobial stewardship intervention for bloodstream infections. J Clin Microbiol. 2017;55:60–67.
  • Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57:2935–2939.
  • Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid Commun in Mass Spectrometry. 1988;2:151–153.
  • Duncan MW, Nedelkov D, Walsh R, et al. Applications of MALDI mass spectrometry in clinical chemistry. Clin Chem. 2016;62:134–143.
  • Garaguso I, Borlak J. Matrix layer sample preparation: an improved MALDI‐MS peptide analysis method for proteomic studies. Proteomics. 2008;8:2583–2595.
  • de Hoffmann E, Stroobant V. Mass spectrometry: principles and applications. John Wiley & Sons; 2007.
  • Mamyrin B, Karataev V, Shmikk D, et al. The mass-reflectron. A new nonmagnetic time-of-flight high resolution mass-spectrometer. Zhurnal Ehksperimental’noj I Teoreticheskoj Fiziki. 1973;64:82–89.
  • Mamyrin B. Laser assisted reflectron time-of-flight mass spectrometry. Int J Mass Spectrom Ion Process. 1994;131:1–19.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics.Nature. 2003; p.-198–207.
  • Gregorich ZR, Ge Y. Top‐down proteomics in health and disease: challenges and opportunities. Proteomics. 2014;14:1195–1210.
  • Oliveira BM, Coorssen JR, Martins-de-Souza D. 2DE: the phoenix of proteomics. J Proteomics. 2014;104:140–150.
  • Liu Z, Schey KL. Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis. J Am Soc Mass Spectrom. 2005;16:482–490.
  • Stöcklin R, Vu L, Vadas L, et al. A stable isotope dilution assay for the in vivo determination of insulin levels in humans by mass spectrometry. Diabetes. 1997;46:44–50.
  • Stöcklin R, Arrighi J-F, van Hoang- K, et al. Positive and negative labeling of human proinsulin, insulin, and C-peptide with stable isotopes: new tools for in vivo pharmacokinetic and metabolic studies. Methods Mol Bio. 2000;146:293–315.
  • Cramer R, Gobom J, Nordhoff E. High-throughput proteomics using matrix-assisted laser desorption/ionization mass spectrometry. Expert Rev Proteomics. 2005;2:407–420.
  • Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica Chimica Acta. 2003;337:11–21.
  • Beardsley RL, Reilly JP. Optimization of guanidination procedures for MALDI mass mapping. Anal Chem. 2002;74:1884–1890.
  • Ng EW, Wong MY, Poon TC. Advances in MALDI mass spectrometry in clinical diagnostic applications. 2014; 336:139-175.
  • Banach T, Ł A, Wyłupek D, et al. Applicability of 2D gel electrophoresis and liquid chromatography in proteomic analysis of urine using mass spectrometry MALDI-TOF. Pol J Vet Sci. 2013;16:587–592.
  • Rosa N, Correia MJ, Arrais JP, et al. From the salivary proteome to the OralOme: comprehensive molecular oral biology. Arch Oral Biol. 2012;57:853–864.
  • Al-Tarawneh SK, Border MB, Dibble CF, et al. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. Omics: J Integrative Biol. 2011;15:353–361.
  • Hu S, Loo JA, Wong DT. Human saliva proteome analysis and disease biomarker discovery. Expert Rev Proteomics. 2007;4:531–538.
  • Castagnola M, Cabras T, Iavarone F, et al. The human salivary proteome: a critical overview of the results obtained by different proteomic platforms. Expert Rev Proteomics. 2012;9:33–46.
  • Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J. 2016;7:15.
  • Gilany K, Minai-Tehrani A, Savadi-Shiraz E, et al. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder. J Reproduction & Infertility. 2015;16:61–71.
  • Xu X, Veenstra TD. Analysis of biofluids for biomarker research. PROTEOMICS-Clinical Appl. 2008;2:1403–1412.
  • Veenstra TD, Conrads TP, Hood BL, et al. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics. 2005;4:409–418.
  • Paik Y-K, Kim H, Lee E-Y, et al. Overview and introduction to clinical proteomics. Methods Mol Bio. 2008;428:1–31.
  • Lapolla A, Fedele D, Aronica R, et al. A highly specific method for the characterization of glycation and glyco‐oxidation products of globins. Rapid Commun in Mass Spectrometry. 1997;11:613–617.
  • Biroccio A, Urbani A, Massoud R, et al. A quantitative method for the analysis of glycated and glutathionylated hemoglobin by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Anal Biochem. 2005;336:279–288.
  • Shiea J, Cho YT, Lin YH, et al. Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry to rapidly screen for albuminuria. Rapid Commun Mass Spectrometry. 2008;22:3754–3760.
  • Iles RK, Shahpari ME, Cuckle H, et al. Direct and rapid mass spectral fingerprinting of maternal urine for the detection of Down syndrome pregnancy. Clin Proteomics. 2015;12:9.
  • Cho C-KJ, Diamandis EP. Application of proteomics to prenatal screening and diagnosis for aneuploidies. Clin Chem Lab Med. 2011;49(1):33–41.
  • Kamanna S, Henry J, Voelcker NH, et al. Direct identification of forensic body fluids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Mass Spectrom. 2016;397:18–26.
  • Guinan T, Kirkbride P, Pigou PE, et al. Surface‐assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom Rev. 2015;34:627–640.
  • Ferrari L, Seraglia R, Rossi CR, et al. Protein profiles in sera of patients with malignant cutaneous melanoma. Rapid Commun Mass Spectrometry. 2000;14:1149–1154.
  • Musharraf SG, Hashmi N, Choudhary MI, et al. Comparison of plasma from healthy nonsmokers, smokers, and lung cancer patients: pattern-based differentiation profiling of low molecular weight proteins and peptides by magnetic bead technology with MALDI-TOF MS. Biomarkers. 2012;17:223–230.
  • Klupczynska A, Swiatly A, Hajduk J, et al. Identification of serum peptidome signatures of non-small cell lung cancer. Int J Mol Sci. 2016;17:410.
  • Widlak P, Pietrowska M, Polanska J, et al. Serum mass profile signature as a biomarker of early lung cancer. Lung Cancer. 2016;99:46–52.
  • Swiatly A, Horala A, Hajduk J, et al. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer. 2017;17:472.
  • Gadgeel S, Goss G, Soria J-C, et al. Evaluation of the VeriStrat serum protein test in patients with advanced squamous cell carcinoma of the lung treated with second-line afatinib or erlotinib in the phase III LUX-Lung 8 study. Lung Cancer. 2017;109:101–108.
  • Wolter M, Rower C, Koy C, et al. Proteoform profiling of peripheral blood serum proteins from pregnant women provides a molecular IUGR signature. J Proteomics. 2016;149:44–52.
  • Meng Q, Ge S, Yan W, et al. Screening for potential serum-based proteomic biomarkers for human type 2 diabetes mellitus using MALDI-TOF MS. Proteomics Clin Appl. 2017;11:3–4.
  • Wang H, Luo C, Zhu S, et al. Serum peptidome profiling for the diagnosis of colorectal cancer: discovery and validation in two independent cohorts. Oncotarget. 2017;8:59376–59386.
  • Rovithi M, Lind JSW, Pham TV, et al. Response and toxicity prediction by MALDI-TOF-MS serum peptide profiling in patients with non-small cell lung cancer. Proteomics Clin Appl. 2016;10:743–749.
  • Snyder CM, Alley WR Jr., Campos MI, et al. Complementary glycomic analyses of sera derived from colorectal cancer patients by MALDI-TOF-MS and microchip electrophoresis. Anal Chem. 2016;88:9597–9605.
  • Oran PE, Trenchevska O, Nedelkov D, et al. Parallel workflow for high-throughput (>1,000 samples/day) quantitative analysis of human insulin-like growth factor 1 using mass spectrometric immunoassay. PLoS One. 2014;9:e92801.
  • Guu S-Y, Lin T-H, Chang S-C, et al. Serum N-glycome characterization and anti-carbohydrate antibody profiling in oral squamous cell carcinoma patients. PLoS One. 2017;12:e0178927.
  • Yao J, Sun N, Wang J, et al. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics. 2017; 17: 1600320
  • Lapolla A, Molin L, Sechi A, et al. A further investigation on a MALDI-based method for evaluation of markers of renal damage. J Mass Spectrometry: JMS. 2009;44:1754–1760.
  • Cho YT, Chen CW, Chen MP, et al. Diagnosis of albuminuria by tryptic digestion and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Clin Chim Acta. 2013;420:76–81.
  • Bonesso L, Piraud M, Caruba C, et al. Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orphanet J Rare Dis. 2014;9:19.
  • Lapolla A, Porcu S, Traldi P. Mass spectrometry for diabetic nephropathy monitoring: new effective tools for physicians. ISRN Endocrinol. 2012;2012:768159.
  • Bryan RT, Wei W, Shimwell NJ, et al. Assessment of high-throughput high-resolution MALDI-TOF-MS of urinary peptides for the detection of muscle-invasive bladder cancer. Proteomics Clin Appl. 2011;5:493–503.
  • Wang W, Wang S, Zhang M. Identification of urine biomarkers associated with lung adenocarcinoma. Oncotarget. 2017;8:38517–38529.
  • Segawa S, Sawai S, Murata S, et al. Direct application of MALDI-TOF mass spectrometry to cerebrospinal fluid for rapid pathogen identification in a patient with bacterial meningitis. Clin Chim Acta. 2014;435:59–61.
  • Liguori M, Qualtieri A, Tortorella C, et al. Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS One. 2014;9:e103984.
  • Pieragostino D, Del Boccio P, Di Ioia M, et al. Oxidative modifications of cerebral transthyretin are associated with multiple sclerosis. Proteomics. 2013;13:1002–1009.
  • Teunissen CE, Mja K-S, Pham TV, et al. Identification of biomarkers for diagnosis and progression of MS by MALDI-TOF mass spectrometry. Mult Scler. 2011;17:838–850.
  • Karlsson I, Ndreu L, Quaranta A, et al. Glycosylation patterns of selected proteins in individual serum and cerebrospinal fluid samples. J Pharm Biomed Anal. 2017;145:431–439.
  • Palmigiano A, Messina A, Bua RO, et al. CSF N-glycomics using MALDI MS techniques in Alzheimer’s disease. Methods Mol Biol. 2018;1750:75–91.
  • Palmigiano A, Barone R, Sturiale L, et al. CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteomics. 2016;131:29–37.
  • Prodan A, Brand H, Imangaliyev S, et al. A study of the variation in the salivary peptide profiles of young healthy adults acquired using MALDI-TOF MS. PLoS One. 2016;11:e0156707.
  • Ao S, Sun X, Shi X, et al. Longitudinal investigation of salivary proteomic profiles in the development of early childhood caries. J Dent. 2017;61:21–27.
  • Hajduk J, Matysiak J, Kokot ZJ. Challenges in biomarker discovery with MALDI-TOF MS. Clinica Chimica Acta. 2016;458:84–98.
  • Gatlin CL, White KY, Tracy MB, et al. Enhancement in MALDI‐TOF MS analysis of the low molecular weight human serum proteome. J Mass Spectrometry. 2011;46:85–89.
  • Padoan A, Basso D, la Malfa M, et al. Reproducibility in urine peptidome profiling using MALDI‐TOF. Proteomics. 2015;15:1476–1485.
  • Callesen AK, Madsen JS, Vach W, et al. Serum protein profiling by solid phase extraction and mass spectrometry: a future diagnostics tool? Proteomics. 2009;9:1428–1441.
  • Callesen AK, Madsen JS, Vach W, et al. Reproducibility of serum protein profiling by systematic assessment using solid‐phase extraction and matrix‐assisted laser desorption/ionization mass spectrometry. Rapid Commun in Mass Spectrometry. 2008;22:291–300.
  • Chen Y-N, Du H-Y, Shi Z-Y, et al. Serum proteomic profiling for autism using magnetic bead-assisted matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a pilot study. World J Pediatrics. 2018;14:233–237.
  • Qi W J, Jiang JH, Li X, et al. Magnetic bead-based salivary peptidome profiling for accelerated osteogenic orthodontic treatments. Chin J Dent Res. 2018;21:41–49.
  • Zeng X, Zhao L, Li Z, et al. Impact of experimental and demographic variables in serum peptide profiling based on magnetic bead and MALDI-TOF mass spectrometry. Clinica Chimica Acta. 2011;412:112–119.
  • Terracciano R, Preianò M, Palladino GP, et al. Peptidome profiling of induced sputum by mesoporous silica beads and MALDI‐TOF MS for non‐invasive biomarker discovery of chronic inflammatory lung diseases. Proteomics. 2011;11:3402–3414.
  • Klont F, Nh TH, Pt H, et al. Assuring consistent performance of an insulin-like growth factor 1 MALDImmunoassay by monitoring measurement quality indicators. Anal Chem. 2017;89:6188–6195.
  • Li H, Popp R, Frohlich B, et al. Peptide and Protein Quantification Using Automated Immuno-MALDI (iMALDI). J. Vis. Exp. 2017;e55933.
  • Wang J, Yao J, Sun N, et al. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides. J Chromatogr. 2017;1512:1–8.
  • Kanshin E, Michnick S, Thibault P, editors Sample preparation and analytical strategies for large-scale phosphoproteomics experiments. Semin Cell Dev Biol. 2012;23:843-853.
  • Verrills NM. Clinical proteomics: present and future prospects. Clin Biochemist Rev. 2006;27:99–116.
  • Law K, Larkin JR. Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem. 2011;399:2597–2622.
  • Guinan T, Ronci M, Vasani R, et al. Comparison of the performance of different silicon-based SALDI substrates for illicit drug detection. Talanta. 2015;132:494–502.
  • Guinan T, Ronci M, Kobus H, et al. Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta. 2012;99:791–798.
  • Najam-ul-Haq M, Rainer M, Trojer L, et al. Alternative profiling platform based on MELDI and its applicability in clinical proteomics. Expert Rev Proteomics. 2007;4:447–452.
  • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet. 2002;359:572–577.
  • Alvarez AM, Neubeck S, Parra S, et al. Serum protein profile in women with pregnancy morbidity associated with antiphospholipid syndrome. J Hum Reprod Sci. 2017;10:10–17.
  • Baudin B, Bruneel A, Poupon R, et al. Serum proteomic signatures as biomarkers of primary biliary cirrhosis diagnosis and prognosis. Ann Biol Clin (Paris). 2016;74:607–612.
  • de Seny D, Cobraiville G, Leprince P, et al. Biomarkers of inflammation and innate immunity in atrophic nonunion fracture. J Transl Med. 2016;14:258.
  • Maruwaka M, Yoshikawa K, Okamoto S, et al. Biomarker research for moyamoya disease in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. J Stroke Cerebrovasc Dis. 2015;24:104–111.
  • Ardito F, Giuliani M, Perrone D, et al. Expression of salivary biomarkers in patients with oral mucositis: evaluation by SELDI‐TOF/MS. Oral Dis. 2016;22:209–219.
  • Feuerstein I, Najam-ul-Haq M, Rainer M, et al. Material-enhanced laser desorption/ionization (MELDI)—A new protein profiling tool utilizing specific carrier materials for time of flight mass spectrometric analysis. J Am Soc Mass Spectrom. 2006;17:1203–1208.
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69:4751–4760.
  • Baker TC, Han J, Borchers CH. Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr Opin Biotechnol. 2017;43:62–69.
  • Pallua J, Schaefer G, Bittner L, et al. Matrix-Assisted Laser Desorption-Ionization Imaging Mass Spectrometry for Direct Tissue Analysis. LC, GC North America. 2011; (Spec. Iss.):21-28.
  • Zhou R, Basile F. Plasmonic-thermal decomposition/digestion of proteins: a rapid on-surface protein digestion technique for mass spectrometry imaging. Anal Chem. 2017;89:8704–8712.
  • Rodrigo MAM, Zitka O, Krizkova S, et al. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–255.
  • Cole LM, Clench MR. Mass spectrometry imaging tools in oncology. Biomarkers: Biochem Indicators Exposure, Response, Susceptibility to Chem. 2015;9:863–868.
  • Kim HK, Reyzer ML, Choi IJ, et al. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J Proteome Res. 2010;9:4123–4130.
  • Rebours V, le Faouder J, Laouirem S, et al. In situ proteomic analysis by MALDI imaging identifies ubiquitin and thymosin-β4 as markers of malignant intraductal pancreatic mucinous neoplasms. Pancreatology. 2014;14:117–124.
  • Balluff B, Frese CK, Maier SK, et al. De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. J Pathol. 2015;235:3–13.
  • Balluff B, Rauser S, Ebert MP, et al. Direct molecular tissue analysis by MALDI imaging mass spectrometry in the field of gastrointestinal disease. Gastroenterology. 2012;143(544–9):e2.
  • Rahman SJ, Gonzalez AL, Li M, et al. Lung cancer diagnosis from proteomic analysis of preinvasive lesions. Cancer Res. 2011;71:3009–3017.
  • Marko-Varga G, Fehniger TE, Rezeli M, et al. Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J Proteomics. 2011;74:982–992.
  • Steurer S, Borkowski C, Odinga S, et al. MALDI mass spectrometric imaging based identification of clinically relevant signals in prostate cancer using large‐scale tissue microarrays. Int J Cancer. 2013;133:920–928.
  • Bonnel D, Longuespee R, Franck J, et al. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer. Anal Bioanal Chem. 2011;401:149–165.
  • Pallua JD, Schaefer G, Seifarth C, et al. MALDI-MS tissue imaging identification of biliverdin reductase B overexpression in prostate cancer. J Proteomics. 2013;91:500–514.
  • Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry—from bench to bedside. Biochimica Et Biophysica Acta (Bba)-Proteins Proteomics. 2017;1865:776–783.
  • Pietrowska M, Diehl HC, Mrukwa G, et al. Molecular profiles of thyroid cancer subtypes: classification based on features of tissue revealed by mass spectrometry imaging. Biochimica Et Biophysica Acta (Bba)-Proteins Proteomics. 2017;1865:837–845.
  • Sun Y, Zhang J, Guo F, et al. Identification of apolipoprotein CI peptides as a potential biomarker and its biological roles in breast cancer. Med Sci Monitor: Int Med J Exp Clini Res. 2016;22:1152.
  • Sugihara Y, Watanabe K-I VÁ. Novel insights in drug metabolism by MS imaging. Bioanalysis. 2016;8:575–588.
  • Schubert KO, Weiland F, Baune BT, et al. The use of MALDI‐MSI in the investigation of psychiatric and neurodegenerative disorders: A review. Proteomics. 2016;16:1747–1758.
  • Hanrieder J, Malmberg P, Ewing AG. Spatial neuroproteomics using imaging mass spectrometry. Biochimica Et Biophysica Acta (Bba)-Proteins Proteomics. 2015;1854:718–731.
  • Llombart V, Trejo SA, Bronsoms S, et al. Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. J Proteomics. 2017;152:243–253.
  • Bailey MJ, Bradshaw R, Francese S, et al. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst. 2015;140:6254–6259.
  • Lauzon N, Dufresne M, Chauhan V, et al. Development of laser desorption imaging mass spectrometry methods to investigate the molecular composition of latent fingermarks. J Am Soc Mass Spectrom. 2015;26:878–886.
  • He Y, Li H, Lu X, et al. Mass spectrometry biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol. 2010;48:3888–3892.
  • Singhal N, Kumar M, Kanaujia PK, et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.
  • Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods. 2017;138:20–29.
  • Perez KK, Olsen RJ, Musick WL, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2012;137:1247–1254.
  • Gurard-Levin ZA, Scholle MD, Eisenberg AH, et al. High-throughput screening of small molecule libraries using SAMDI mass spectrometry. ACS Comb Sci. 2011;13:347–35.
  • Papac DI, Shahrokh Z. Mass spectrometry innovations in drug discovery and development. Pharm Res. 2001;18:131–145.
  • VanderPorten EC, Scholle MD, Sherrill J, et al. Identification of small-molecule noncovalent binders utilizing SAMDI technology. SLAS DISCOVERY: Advancing Life Sciences R&D. 2017;22:1211–1217.
  • Calandra E, Posocco B, Crotti S, et al. Cross-validation of a mass spectrometric-based method for the therapeutic drug monitoring of irinotecan: implementation of matrix-assisted laser desorption/ionization mass spectrometry in pharmacokinetic measurements. Anal Bioanal Chem. 2016;408:5369–5377.
  • Muddiman DC, Gusev AI, Proctor A, et al. Quantitative measurement of cyclosporin A in blood by time-of-flight mass spectrometry. Anal Chem. 1994;66:2362–2368.
  • Urbani A, Federici G. I Immunosuppressant monitoring by maldi mass spectrometry. European Patent Application; 2012: EP2426499A1
  • Su A-K, Liu J-T, Lin C-H. Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry. Talanta. 2005;67:718–724.
  • Gut Y, Boiret M, Bultel L, et al. Application of chemometric algorithms to MALDI mass spectrometry imaging of pharmaceutical tablets. J Pharm Biomed Anal. 2015;105:91–100.
  • Thoren KL, editor Mass spectrometry methods for detecting monoclonal immunoglobulins in multiple myeloma minimal residual disease. Semin Hematol. 2018;55:41-43
  • Song W, Wang N, Li W, et al. Serum peptidomic profiling identifies a minimal residual disease detection and prognostic biomarker for patients with acute leukemia. Oncol Lett. 2013;6:1453–1460.
  • Bai J, He A, Zhang W, et al. Potential biomarkers for adult acute myeloid leukemia minimal residual disease assessment searched by serum peptidome profiling. Proteome Sci. 2013;11:39.
  • Rappsilber J, Moniatte M, Nielsen ML, et al. Experiences and perspectives of MALDI MS and MS/MS in proteomic research. Int J Mass Spectrom. 2003;226:223–237.
  • Albrethsen J. Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem. 2007;53:852–858.
  • Greco V, Piras C, Pieroni L, et al. Direct Assessment of Plasma/Serum Sample Quality for Proteomics Biomarker Investigation. Serum/Plasma Proteomics: Methods and Protocols. 2017; 1619:3–21.
  • Percy AJ, Parker CE, Borchers CH. Pre-analytical and analytical variability in absolute quantitative MRM-based plasma proteomic studies. Bioanalysis. 2013;5:2837–2856.
  • Rai AJ, Vitzthum F. Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: implications for clinical proteomics. Expert Rev Proteomics. 2006;3:409–426.
  • Rosenling T, Slim CL, Christin C, et al. The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J Proteome Res. 2009;8:5511–5522.
  • Takehana S, Yoshida H, Ozawa S, et al. The effects of pre-analysis sample handling on human plasma amino acid concentrations. Clinica Chimica Acta. 2016;455:68–74.
  • Mateos J, Carneiro I, Corrales F, et al. Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J Proteomics. 2017;150:109–120.
  • Hassis ME, Niles RK, Braten MN, et al. Evaluating the effects of preanalytical variables on the stability of the human plasma proteome. Anal Biochem. 2015;478:14–22.
  • Greco V, Pieragostino D, Piras C, et al. Direct analytical sample quality assessment for biomarker investigation: qualifying cerebrospinal fluid samples. Proteomics. 2014;14:1954–1962.
  • Pieragostino D, Petrucci F, del Boccio P, et al. Pre-analytical factors in clinical proteomics investigations: impact of ex vivo protein modifications for multiple sclerosis biomarker discovery. J Proteomics. 2010;73:579–592.
  • Marshall J, Kupchak P, Zhu W, et al. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res. 2003;2:361–372.
  • Karsan A, Eigl BJ, Flibotte S, et al. Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis. Clin Chem. 2005;51:1525–1528.
  • Preianò M, Maggisano G, Lombardo N, et al. Influence of storage conditions on MALDI‐TOF MS profiling of gingival crevicular fluid: implications on the role of S100A8 and S100A9 for clinical and proteomic based diagnostic investigations. Proteomics. 2016;16:1033–1045.
  • Lygirou V, Makridakis M, Vlahou A. Biological sample collection for clinical proteomics: existing SOPs. Clinical Proteomics: Methods Protocols. 2015; 1243:3–27.
  • Dekker L, Dalebout J, Jenster G, et al. Reproducibility of MALDI-TOF mass spectrometry measurements on complex biofluids. AACR; 2004; 64: 817
  • Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Briefings Functional Genom Proteomics. 2008;7:355–370.
  • Krutchinsky AN, Chait BT. On the nature of the chemical noise in MALDI mass spectra. J Am Soc Mass Spectrom. 2002;13:129–134.
  • van Kampen JJ, Burgers PC, de Groot R, et al. Biomedical application of MALDI mass spectrometry for small‐molecule analysis. Mass Spectrom Rev. 2011;30:101–120.
  • Lou X, Waal BF, Milroy LG, et al. A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS. J Spectrom. 2015;50:766–770.
  • Bucknall M, Fung KY, Duncan MW. Practical quantitative biomedical applications of MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom. 2002;13:1015–1027.
  • Pang RT, Johnson PJ, Chan CM, et al. Technical evaluation of MALDI-TOF mass spectrometry for quantitative proteomic profiling matrix formulation and application. Clin Proteomics. 2004;1:259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.