170
Views
7
CrossRef citations to date
0
Altmetric
Review

The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis

ORCID Icon &
Pages 873-886 | Received 27 Apr 2018, Accepted 15 Oct 2018, Published online: 26 Oct 2018

References

  • Lee EY , Fulan BM , Wong GCL , et al. Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proc Natl Acad Sci USA. 2016 Nov 29;113(48):13588–13593. PubMed PMID: ISI:000388835700040; English.
  • Li JG , Koh JJ , Liu SP , et al. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci. 2017 Feb 14;11:73. PubMed PMID: ISI:000393912400001; English.
  • Dubovskii PV , Utkin YN. Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae. 2014;6(3):11–18.
  • Mahlapuu M , Hakansson J , Ringstad L , et al. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016 Dec 27;6:194. PubMed PMID: ISI:000390602000001; English.
  • Sierra JM , Fuste E , Rabanal F , et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017;17(6):663–676. PubMed PMID: ISI:000402979500002; English.
  • Panteleev PV , Balandin SV , Ivanov VT , et al. A therapeutic potential of animal beta-hairpin antimicrobial peptides. Curr Med Chem. 2017;24(17):1724–1746. PubMed PMID: ISI:000404998700003; English.
  • Bechinger B , Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017 Mar;96(3):254–260. PubMed PMID: ISI:000398159100003; English.
  • Riedl S , Zweytick D , Lohner K . Membrane-active host defense peptides - challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids. 2011 Nov;164(8):766–781. PubMed PMID: ISI:000297958000008; English.
  • Wu DD , Gao YF , Qi YM , et al. Peptide-based cancer therapy: opportunity and challenge. Cancer Lett. 2014 Aug 28;351(1):13–22. PubMed PMID: ISI:000339775300003; English.
  • Felicio MR , Silva ON , Goncalves S , et al. Peptides with dual antimicrobial and anticancer activities. Front Chem. 2017 Feb 21;5:5. PubMed PMID: ISI:000394420800001; English.
  • Matsuzaki K . Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta (Biomembranes). 2009 Aug;1788(8):1687–1692. PubMed PMID: ISI:000267772200017; English.
  • Carmona-Ribeiro AM , Carrasco LDD . Novel formulations for antimicrobial peptides. Int J Mol Sci. 2014 Oct;15(10):18040–18083. PubMed PMID: ISI:000344457200026; English.
  • Hwang PM , Vogel HJ . Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76(2–3):235–246. PubMed PMID: ISI:000078073600011; English.
  • Huang YB , Huang JF , Chen YX . Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein & Cell. 2010 Feb;1(2):143–152. PubMed PMID: ISI:000208510400007; English.
  • Zelezetsky I , Tossi A . Alpha-helical antimicrobial peptides–using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta (Biomembranes). 2006;1758(9):1436–1449. 2011/04/11/08:35:27.
  • Bernheimer AW , Rudy B . Interactions between membranes and cytolytic peptides. Biochim Biophys Acta. 1986;864(1):123–141. 2012/03/04/12:01:01.
  • Dubovskii PV , Vassilevski AA , Kozlov SA , et al. Latarcins: versatile spider venom peptides. Cell Mol Life Sci. 2015 Dec;72(23):4501–4522. PubMed PMID: 26286896.
  • Konshina AG , Dubovskii PV , Efremov RG . Structure and dynamics of cardiotoxins. Curr Protein Pept Sci. 2012;13(6):570–584.
  • Feofanov AV , Sharonov GV , Dubinnyi MA , et al. Comparative study of structure and activity of cytotoxins from venom of the cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry. 2004;69(10):1148–1157. PubMed PMID: 226.
  • Dubovskii PV , Konshina AG , Efremov RG . Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr Med Chem. 2014;21(3):270–287. PubMed PMID: 24180277.
  • Efremov RG , Chugunov AO , Pyrkov TV , et al. Molecular lipophilicity in protein modeling and drug design. Curr Med Chem. 2007;14(4):393–415. PubMed PMID: 293.
  • Efremov RG , Alix AJ . Environmental characteristics of residues in proteins: three-dimensional molecular hydrophobicity potential approach. J Biomol Struct Dyn. 1993;11(3):483–507. 2011/04/11/12:06:17.
  • Efremov RG , Pyrkova DV , Krylov NA , et al. Dynamic structural/amphiphilic “portrait” of biomembranes as their fundamental property relevant to function: results of atomistic simulations. Biophys J. 2015 Jan 27;108(2):78A–78A. PubMed PMID: ISI:000359471700399; English.
  • Pyrkov TV , Chugunov AO , Krylov NA , et al. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics. 2009;25(9):1201–1202. 2011/04/06/13:13:51.
  • Polyansky AA , Chugunov AO , Volynsky PE , et al. PREDDIMER: a web server for prediction of transmembrane helical dimers. Bioinformatics. 2014 Mar 15;30(6):889–890. PubMed PMID: 24202542.
  • Koromyslova AD , Chugunov AO , Efremov RG . Deciphering fine molecular details of proteins’ structure and function with a protein surface topography (PST) method. J Chem Inf Model. 2014 Apr;54(4):1189–1199. PubMed PMID: ISI:000335201200016; English.
  • Konshina AG , Krylov NA , Efremov RG . Cardiotoxins: functional role of local conformational changes. J Chem Inf Model. 2017 Nov;57(11):2799–2810. PubMed PMID: ISI:000416614900017; English.
  • Petras D , Sanz L , Segura A , et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the Pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res. 2011 Mar;10(3):1266–1280. PubMed PMID: ISI:000287944000030; English.
  • Tan KY , Tan CH , Fung SY , et al. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics. 2015 Apr 29;120:105–125. PubMed PMID: ISI:000354501700009; English.
  • Dutta S , Chanda A , Kalita B , et al. Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: correlation of venom composition with its biochemical and pharmacological properties. J Proteomics. 2017 Mar 6;156:29–39. PubMed PMID: ISI:000395609700004; English.
  • Wong KY , Tan CH , Tan KY , et al. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics. 2018 Mar 20;175:156–173. PubMed PMID: ISI:000428489600017; English.
  • Tan CH , Fung SY , Yap MKK , et al. Unveiling the elusive and exotic: venomics of the Malayan blue coral snake (Calliophis bivirgata flaviceps). J Proteomics. 2016 Jan 30;132:1–12. PubMed PMID: ISI:000368747400001; English.
  • Kini RM , Doley R . Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855–867. PubMed PMID: 199.
  • Dubovskii PV , Dementieva DV , Bocharov EV , et al. Membrane binding motif of the P-type cardiotoxin. J Mol Biol. 2001;305(1):137–149. PubMed PMID: 195.
  • Dubovskii PV , Dubinny MA , Volynsky PE , et al. Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. J Biomol Struct Dyn. 2017:1–16. DOI: 10.1080/07391102.2017.1389662
  • Tsetlin V . Snake venom alpha-neurotoxins and other ‘three-finger’ proteins. Eur J Biochem. 1999 Sep;264(2):281–286. PubMed PMID: 10491072.
  • Sivaraman T , Kumar TK , Yang PW , et al. Cardiotoxin-like basic protein (CLBP) from Naja naja atra is not a cardiotoxin. Toxicon. 1997 Sep;35(9):1367–1371. PubMed PMID: 9403962.
  • Sun YJ , Wu WG , Chiang CM , et al. Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry. 1997;36(9):2403–2413. PubMed PMID: 109.
  • Wu P-L , Lee S-C , Chuang -C-C , et al. Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem. 2006;281(12):7937–7945. PubMed PMID: 110.
  • Kumar TK , Jayaraman G , Lee CS , et al. Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn. 1997;15(3):431–463. PubMed PMID: 207.
  • Dubovskii PV , Utkin YN . Antiproliferative activity of cobra venom cytotoxins. Curr Top Med Chem. 2015;15(7):638–648. PubMed PMID: 25686733.
  • Gasanov SE , Dagda RK , Rael ED . Snake venom cytotoxins, phospholipase As, and Zn-dependent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol. 2014 Jan 25;4(1):1000181. PubMed PMID: 24949227.
  • Dementieva DV , Bocharov EV , Arseniev AS . Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: spatial structures with tightly bound water molecules. Eur J Biochem. 1999;263(1):152–162. PubMed PMID: 209.
  • Dubovskii PV , Dubinnyi MA , Konshina AG , et al. Structural and dynamic “Portraits” of recombinant and native cytotoxin I from Naja oxiana: how close are they? Biochemistry. 2017;56(34):4468–4477.
  • Chien KY , Chiang CM , Hseu YC , et al. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J Biol Chem. 1994;269(20):14473–14483. PubMed PMID: 221.
  • Dubovskii PV , Lesovoy DM , Dubinnyi MA , et al. Interaction of three-finger toxins with phospholipid membranes: comparison of S- and P-type cytotoxins. Biochem J. 2005;387(Pt 3):807–815. 2011/06/20/13:56:15.
  • Polyansky AA , Volynsky PE , Arseniev AS , et al. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. J Phys Chem B. 2009;113(4):1107–1119.
  • Konshina AG , Boldyrev IA , Omelkov AV , et al. Anionic lipids: determinants of binding cytotoxins from snake venom on the surface of cell membranes. Acta Naturae. 2010;2(2):88–96.
  • Dubovskii PV , Volynsky PE , Polyansky AA , et al. Spatial structure and activity mechanism of a novel spider antimicrobial peptide. Biochemistry. 2006;45(35):10759–10767. PubMed PMID: 300.
  • Vassilevski AA , Kozlov SA , Grishin EV . Molecular diversity of spider venom. Biochemistry. 2009;74(13):1505–1534. PubMed PMID: 466.
  • Kozlov SA , Vassilevski AA , Feofanov AV , et al. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006;281(30):20983–20992. 2011/04/11/11:45:49.
  • Kuzmenkov AI , Sachkova MY , Kovalchuk SI , et al. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem J. 2016 Aug;473:2495–2506. PubMed PMID: ISI:000393715400007; English.
  • Dubovskii PV , Li H , Takahashi S , et al. Structure of an analog of fusion peptide from hemagglutinin. Protein Sci. 2000;9(4):786–798. PubMed PMID: 264.
  • Lee YJ , Johnson G , Pellois JP . Modeling of the endosomolytic activity of HA2-TAT peptides with red blood cells and ghosts. Biochemistry. 2010;49(36):7854–7866. 2011/04/15/09:52:37.
  • Vasquez-Montes V , Gerhart J , King KE , et al. Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant. Biochim Biophys Acta (Biomembranes). 2018 Feb;1860(2):534–543. PubMed PMID: ISI:000424183500033; English.
  • Dubovskii PV , Volynsky PE , Polyansky AA , et al. Three-dimensional structure/hydrophobicity of latarcins specifies their mode of membrane activity. Biochemistry. 2008;47(11):3525–3533. PubMed PMID: 301.
  • Kuznetsov AS , Dubovskii PV , Vorontsova OV , et al. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Biochemistry. 2014 April 13;79(5):459–468. [Research]. [1]. engl.
  • Efremov RG , Nolde DE , Volynsky PE , et al. Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Lett. 1999;462(1–2):205–210. PubMed PMID: 20.
  • Epand RM , Walker C , Epand RF , et al. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta (Biomembranes). 2016 May;1858(5):980–987. PubMed PMID: ISI:000374603600008; English.
  • Epand RM , Rotem S , Mor A , et al. Bacterial membranes as predictors of antimicrobial potency. J Am Chem Soc. 2008;130(43):14346–14352. PubMed PMID: 296.
  • Dubovskii PV , Vorontsova OV , Utkin YN , et al. Cobra cytotoxins: determinants of antibacterial activity. Mendeleev Commun. 2015;21(1):70–71.
  • Dubovskii PV , Vassilevski AA , Samsonova OV , et al. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011;278(22):4382–4393. PubMed PMID: 91.
  • Mohanram H , Bhattacharjya S . Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Antimicrob Agents Chemother. 2014 Apr;58(4):1987–1996. PubMed PMID: 24419338.
  • Primon-Barros M , Macedo AJ . Animal venom peptides: potential for new antimicrobial agents. Curr Top Med Chem. 2017;17(10):1119–1156. PubMed PMID: ISI:000394571600002; English.
  • Vorontsova OV , Egorova NS , Arseniev AS , et al. Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie. 2011;93(2):227–241. 2011/04/11/12:02:48.
  • Samsonova OV , Kudryashova KS , Feofanov AV . N-terminal moiety of Antimicrobial peptide Ltc1-k increases its toxicity for eukaryotic cells. Acta Naturae. 2011 Apr;3(2):68–78. PubMed PMID: 22649685.
  • Kuhn-Nentwig L , Willems J , Seebeck T , et al. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids. 2011 Jan;40(1):69–76. PubMed PMID: 20140690.
  • Dubinnyi MA , Dubovskii PV , Utkin YN , et al. An ESR study of the Cytotoxin II interaction with model membranes. Russ J Bioorg Chem. 2001;27(2):84–94. 2012/08/01/07:13:21.
  • Dubovskii PV , Lesovoy DM , Dubinnyi MA , et al. Interaction of the P-type cardiotoxin with phospholipid membranes. Eur J Biochem. 2003 May;270(9):2038–2046. PubMed PMID: 12709064.
  • Zusman N , Cafmeyer N , Hudson RA . Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures. Toxicon. 1982;20(2):517–520. PubMed PMID: ISI:A1982NL03300018; English.
  • Suzuki-Matsubara M , Athauda SBP , Suzuki Y , et al. Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, Naja naja. Comp Biochem Physiol C Toxicol Pharmacol. 2016 Jan;179:158–164. PubMed PMID: ISI:000366873300020; English.
  • Solis D , Bovin NV , Davis AP , et al. A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta (Gen Subjects). 2015 Jan;1850(1):186–235. PubMed PMID: ISI:000346326100020; English.
  • Pyrkova DV , Tarasova NK , Krylov NA , et al. Dynamic clustering of lipids in hydrated two-component membranes: results of computer modeling and putative biological impact. J Biomol Struct Dyn. 2013 Jan 1;31(1):87–95. PubMed PMID: ISI:000312447100009; English.
  • Vyas AA , Pan JJ , Patel HV , et al. Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J Biol Chem. 1997;272(15):9661–9670. PubMed PMID: 229.
  • Vyas KA , Patel HV , Vyas AA , et al. Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry. 1998;37(13):4527–4534. PubMed PMID: 230.
  • Patel HV , Vyas AA , Vyas KA , et al. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem. 1997;272(3):1484–1492. PubMed PMID: 231.
  • Kao P-H , Lin S-R , Chang L-S . Interaction of Naja naja atra cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and membrane-damaging activity. Toxicon. 2010;55(7):1387–1395.
  • Jang JY , Krishnaswamy T , Kumar S , et al. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry. 1997 Dec 2;36(48):14635–14641. PubMed PMID: 9398182.
  • Polyansky AA , Vassilevski AA , Volynsky PE , et al. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins. FEBS Lett. 2009;583(14):2425–2428. PubMed PMID: 309.
  • Won A , Ruscito A , Ianoul A . Imaging the membrane lytic activity of bioactive peptide latarcin 2a. Biochim Biophys Acta. 2012 Dec 18;1818(12):3072–3080. PubMed PMID: 22885172.
  • Mollinedo F , Gajate C . Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul. 2015;57:130–146.
  • Andreev OA , Dupuy AD , Segala M , et al. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc Natl Acad Sci USA. 2007 May 8;104(19):7893–7898. PubMed PMID: ISI:000246461500031; English.
  • Andreev OA , Engelman DM , Reshetnyak YK . Targeting acidic diseased tissue. New technology based on use of the pH (Low) Insertion Peptide (pHLIP). Chim Oggi (Chemistry Today). 2009 Mar-Apr;27(2):34–37. PubMed PMID: ISI:000267370200008; English.
  • Wyatt LC , Moshnikova A , Crawford T , et al. Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proc Natl Acad Sci USA. 2018 Mar 20;115(12):E2811–E2818. PubMed PMID.
  • Hinman CL , Jiang XL , Tang HP . Selective cytolysis by a protein toxin as a consequence of direct interaction with the lymphocyte plasma membrane. Toxicol Appl Pharmacol. 1990 Jun 15;104(2):290–300. PubMed PMID: 2363180.
  • StevensTruss R , Messer WS , Hinman CL . Heart and T-lymphocyte cell surfaces both exhibit positive cooperativity in binding a membrane-lytic toxin. J Membr Biol. 1996 Mar;150(1):113–122. PubMed PMID: ISI:A1996TZ75300010; English.
  • Ebrahim K , Shirazi FH , Mirakabadi AZ , et al. Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon. 2015 Oct 22;108:134–140. PubMed PMID: 26482932.
  • Feofanov AV , Sharonov GV , Astapova MV , et al. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem J. 2005;390(Pt 1):11–18. PubMed PMID: 313.
  • Polyansky A , Volynsky P , Arseniev A , et al. Adaptation of a membrane-active peptide to heterogeneous environment. II. The role of mosaic nature of the membrane surface. J Phys Chem B. 2009;113(4):1120–1126. PubMed PMID: 140.
  • Koradi R , Billeter M , Wuthrich K . MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14(1):51–55, 29–32. 2011/04/06/13:09:26.
  • Ponnappan N , Chugh A . Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm. 2017 May;114:145–153. PubMed PMID: ISI:000399268900015; English.
  • Budagavi DP , Zarin S , Chugh A . Antifungal activity of Latarcin 1 derived cell-penetrating peptides against Fusarium solani. Biochim Biophys Acta (Biomembranes). 2018 Feb;1860(2):250–256. PubMed PMID: ISI:000424183500002; English.
  • Budagavi DP , Chugh A . Antibacterial properties of Latarcin 1 derived cell-penetrating peptides. Eur J Pharm Sci. 2018;115:43–49.
  • Marchot P , Bougis PE , Ceard B , et al. Localization of the toxic site of Naja mossambica cardiotoxins: small synthetic peptides express an in vivo lethality. Biochem Biophysical Res Commun. 1988;153(2):642–647.
  • Efremov RG , Volynsky PE , Nolde DE , et al. Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys J. 2002;83(1):144–153. PubMed PMID: 102.
  • Smith CA , Hinman CL . A cyclic peptide, L1AD3, induces early signs of apoptosis in human leukemic T-cell lines. J Biochem Mol Toxicol. 2004;18(4):204–220. PubMed PMID: 444.
  • Smith CA , Hinman CL . Evidence that L1AD3, an apoptosis-inducing cyclic peptide, binds a leukemic T-cell membrane protein receptor. Arch Biochem Biophys. 2004;432(1):88–101. 2012/01/16/11:15:59.
  • Sala A , Cabassi CS , Santospirito D , et al. Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. Plos One. 2018 Jan 24;13(1):e0190778. PubMed PMID: ISI:000423412500023; English.
  • Henriques S , Melo MN , Castanho MARB . Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 2006;399(1):1–7. 2012/04/03/06:41:23.
  • Splith K , Neundorf I . Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J. 2011;40(4):387–397. 2012/01/18/11:02:03.
  • Last NB , Schlamadinger DE , Miranker AD . A common landscape for membrane-active peptides. Protein Sci. 2013 Jul;22(7):870–882. PubMed PMID: ISI:000320944600003; English.
  • Li ZZ , Wang X , Teng D , et al. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin(6)/Tat(11). Eur J Med Chem. 2018 Feb 10;145:263–272. PubMed PMID: ISI:000425198200021; English.
  • Thomas S , Karnik S , Barai RS , et al. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Research. 2010 Jan;38:D774–D780. PubMed PMID: ISI:000276399100121; English.
  • Rondon-Villarreal P , Sierra DA , Torres R . Machine Learning in the Rational Design of Antimicrobial Peptides. Curr Comput Aided Drug Des. 2014;10(3):183–190. PubMed PMID: ISI:000350338600001; English.
  • Porto WF , Pires AS , Franco OL . Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides. J Theor Biol. 2017 Aug 7;426:96–103. PubMed PMID: ISI:000405161900008; English.
  • Kumar S , Li H . In silico design of anticancer peptides. Methods Mol Biol. 2017;1647:245–254.
  • Manavalan B , Basith S , Shin TH , et al. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget. 2017 Sep 29;8(44):77121–77136. PubMed PMID: ISI:000412066700108; English.
  • Mousavizadegan M , Mohabatkar H . An evaluation on different machine learning algorithms for classification and prediction of antifungal peptides. Med Chem. 2016;12(8):795–800. PubMed PMID: ISI:000388743100010; English.
  • Da Silva A , Teschke O . Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim Biophys Acta (Mol Cell Res). 2003 Dec 7;1643(1–3):95–103. PubMed PMID: ISI:000187362800011; English.
  • Hartmann M , Berditsch M , Hawecker J , et al. Damage of the bacterial cell envelope by antimicrobial peptides Gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother. 2010 Aug;54(8):3132–3142. PubMed PMID: ISI:000279963300009; English.
  • Pius J , Morrow MR , Booth V . (2)H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78. Biochemistry. 2012 Jan 10;51(1):118–125. PubMed PMID: 22126434.
  • Wenzel M , Chiriac AI , Otto A , et al. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci USA. 2014 Apr 8;111(14):E1409–E1418. PubMed PMID: ISI:000333985200014; English.
  • Sani MA , Separovic F . Antimicrobial peptide structures: from model membranes to live cells. Chemistry. 2018 Jan 9;24(2):286–291. PubMed PMID: ISI:000419623600001; English.
  • Perez-Peinado C , Dias SA , Domingues MM , et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15–34), antimicrobial peptides from rattlesnake venom. J Biol Chem. 2018 Feb 2;293(5):1536–1549. PubMed PMID: ISI:000424201700006; English.
  • Dubovskii PV , Ignatova AA , Volynsky PE , et al. Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Med Chem. 2018 Oct 1;10(19):2309–2322. PubMed PMID: 30215282; English.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.