899
Views
19
CrossRef citations to date
0
Altmetric
Review

Blood and sputum protein biomarkers for chronic obstructive pulmonary disease (COPD)

, , , &
Pages 923-935 | Received 02 Aug 2018, Accepted 19 Oct 2018, Published online: 29 Oct 2018

References

  • Vogelmeier CF , Criner GJ , Martinez FJ , et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. American Journal of Respiratory and Critical Care Medicine. 2017;195(5):557–582.
  • Lopez-Campos JL , Tan W , Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23.
  • Biomarkers Definitions Working Group . Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol and Ther. 2001;69(3):89–95.
  • Hollander Z , DeMarco ML , Sadatsafavi M , et al. Biomarker development in COPD: moving from P values to products to impact patient care. Chest. 2017;151(2):455–467.
  • Terracciano R , Pelaia G , Preiano M , et al. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl. 2015;9(1–2):203–220.
  • Chandramouli K , Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics. 2009;2009:239204.
  • Barnes PJ , Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–1185.
  • Dayon L , Kussmann M . Proteomics of human plasma: a critical comparison of analytical workflows in terms of effort, Throughput and Outcome. EuPA Open Proteomics . 2013;1:8–16.
  • Lundström SL , Zhang B , Rutishauser D , et al. SpotLight Proteomics: uncovering the hidden blood proteome improves diagnostic power of proteomics. Sci Rep. 2017;7:41929.
  • Verrills NM , Irwin JA , He XY , et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(12):1633–1643.
  • Rana GS , York TP , Edmiston JS , et al. Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD). Anal Bioanal Chem. 2010;397(5):1809–1819.
  • Pepys MB , Hirschfield GM . C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805–1812.
  • Bassuk SS , Rifai N , Ridker PM . High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol. 2004;29(8):439–493.
  • Pinto-Plata VM , Mullerova H , Toso JF , et al. C-reactive protein in patients with COPD, control smokers and non-smokers. Thorax. 2006;61(1):23–28.
  • Agusti A , Edwards LD , Rennard SI , et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7(5):e37483.
  • Man SF , Connett JE , Anthonisen NR , et al. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61(10):849–853.
  • Dahl M , Vestbo J , Lange P , et al. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(3):250–255.
  • Alotaibi NM , Chen V , Hollander Z , et al. Phenotyping COPD exacerbations using imaging and blood-based biomarkers. Int J Chron Obstruct Pulmon Dis. 2018;13:217–229.
  • Miller BE , Tal-Singer R , Rennard SI , et al. Plasma fibrinogen qualification as a drug development tool in chronic obstructive pulmonary disease. perspective of the chronic obstructive pulmonary disease biomarker qualification consortium. Am J Respir Crit Care Med. 2016;193(6):607–613.
  • Dahl M , Tybjaerg-Hansen A , Vestbo J , et al. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(6):1008–1011.
  • Jiang R , Burke GL , Enright PL , et al. Inflammatory markers and longitudinal lung function decline in the elderly. Am J Epidemiol. 2008;168(6):602–610.
  • Kalhan R , Tran BT , Colangelo LA , et al. Systemic inflammation in young adults is associated with abnormal lung function in middle age. PloS one. 2010;5(7):e11431.
  • Engstrom G , Segelstorm N , Ekberg-Aronsson M , et al. Plasma markers of inflammation and incidence of hospitalisations for COPD: results from a population-based cohort study. Thorax. 2009;64(3):211–215.
  • Wedzicha JA , Seemungal TA , MacCallum PK , et al. Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost. 2000;84(2):210–215.
  • Mannino DM , Valvi D , Mullerova H , et al. Fibrinogen, COPD and mortality in a nationally representative U.S. cohort. Copd. 2012;9(4):359–366.
  • Mannino DM , Tal-Singer R , Lomas DA , et al. Plasma fibrinogen as a biomarker for mortality and hospitalized exacerbations in people with COPD. Chron Obstructive Pulm Dis (Miami, Fla.). 2015;2(1):23–34.
  • Kishore U , Greenhough TJ , Waters P , et al. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol. 2006;43(9):1293–1315.
  • Lomas DA , Silverman EK , Edwards LD , et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J. 2009;34(1):95–102.
  • Winkler C , Atochina-Vasserman EN , Holz O , et al. Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respir Res. 2011;12:29.
  • Coxson HO , Dirksen A , Edwards LD , et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med. 2013;1(2):129–136.
  • Sin DD , Man SF , Marciniuk DD , et al. The effects of fluticasone with or without salmeterol on systemic biomarkers of inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(11):1207–1214.
  • Hong KU , Reynolds SD , Giangreco A , et al. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001;24(6):671–681.
  • Laucho-Contreras ME , Polverino F , Tesfaigzi Y , et al. Club cell protein 16 (CC16) augmentation: a potential disease-modifying approach for chronic obstructive pulmonary disease (COPD). Expert Opin Ther Targets. 2016;20(7):869–883.
  • Hung CH , Chen LC , Zhang Z , et al. Regulation of TH2 responses by the pulmonary Clara cell secretory 10-kd protein. J Allergy Clin Immunol. 2004;114(3):664–670.
  • Dierynck I , Bernard A , Roels H , et al. Potent inhibition of both human interferon-gamma production and biologic activity by the Clara cell protein CC16. Am J Respir Cell Mol Biol. 1995;12(2):205–210.
  • Lomas DA , Silverman EK , Edwards LD , et al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008;63(12):1058–1063.
  • Park HY , Churg A , Wright JL , et al. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(12):1413–1419.
  • Labonte LE , Bourbeau J , Daskalopoulou SS , et al. Club cell-16 and RelB as novel determinants of arterial stiffness in exacerbating COPD patients. PLoS One. 2016;11(2):e0149974.
  • Kim HN , Januzzi JL Jr. Natriuretic peptide testing in heart failure. Circulation. 2011;123(18):2015–2019.
  • Weber M , Hamm C . Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006;92(6):843–849.
  • Ishii J , Nomura M , Ito M , et al. Plasma concentration of brain natriuretic peptide as a biochemical marker for the evaluation of right ventricular overload and mortality in chronic respiratory disease. Clin Chim Acta. 2000;301(1–2):19–30.
  • Leuchte HH , Baumgartner RA , Nounou ME , et al. Brain natriuretic peptide is a prognostic parameter in chronic lung disease. Am J Respir Crit Care Med. 2006;173(7):744–750.
  • Lainscak M , Hodoscek LM , Dungen HD , et al. The burden of chronic obstructive pulmonary disease in patients hospitalized with heart failure. Wien Klin Wochenschr. 2009;121(9–10):309–313.
  • Hawkins NM , Petrie MC , Jhund PS , et al. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur J Heart Fail. 2009;11(2):130–139.
  • Inoue Y , Kawayama T , Iwanaga T , et al. High plasma brain natriuretic peptide levels in stable COPD without pulmonary hypertension or cor pulmonale. Intern Med. 2009;48(7):503–512.
  • Bozkanat E , Tozkoparan E , Baysan O , et al. The significance of elevated brain natriuretic peptide levels in chronic obstructive pulmonary disease. J Int Med Res. 2005;33(5):537–544.
  • Nishimura K , Nishimura T , Onishi K , et al. Changes in plasma levels of B-type natriuretic peptide with acute exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:155–162.
  • Chen YR , Chen V , Hollander Z , et al. C-reactive protein and N-terminal prohormone brain natriuretic peptide as biomarkers in acute exacerbations of COPD leading to hospitalizations. PLoS One. 2017;12(3):e0174063.
  • Mueller T , Gegenhuber A , Poelz W , et al. Diagnostic accuracy of B type natriuretic peptide and amino terminal proBNP in the emergency diagnosis of heart failure. Heart. 2005;91(5):606–612.
  • Cavagna L , Caporali R , Klersy C , et al. Comparison of brain natriuretic peptide (BNP) and NT-proBNP in screening for pulmonary arterial hypertension in patients with systemic sclerosis. J Rheumatol. 2010;37(10):2064–2070.
  • Schmidt AM , Yan SD , Yan SF , et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108(7):949–955.
  • Smith DJ , Yerkovich ST , Towers MA , et al. Reduced soluble receptor for advanced glycation end-products in COPD. Eur Respir J. 2011;37(3):516–522.
  • Cheng DT , Kim DK , Cockayne DA , et al. Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(8):948–957.
  • Leitao Filho FS , Won RAS , Mattman A , et al. Serum IgG and risk of exacerbations and hospitalizations in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2017;140(4):1164–1167 e1166.
  • Leitao Filho FS , Ra SW , Mattman A , et al. Serum IgG subclass levels and risk of exacerbations and hospitalizations in patients with COPD. Respir Res. 2018;19(1):30.
  • Putcha N , Paul GG , Azar A , et al. Lower serum IgA is associated with COPD exacerbation risk in SPIROMICS. PloS one. 2018;13(4):e0194924.
  • Nicholas B , Skipp P , Mould R , et al. Shotgun proteomic analysis of human-induced sputum. Proteomics. 2006;6(15):4390–4401.
  • Louhelainen N , Myllarniemi M , Rahman I , et al. Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: current and future perspectives. Int J Chron Obstruct Pulmon Dis. 2008;3(4):585–603.
  • Terracciano R , Preiano M , Palladino GP , et al. Peptidome profiling of induced sputum by mesoporous silica beads and MALDI-TOF MS for non-invasive biomarker discovery of chronic inflammatory lung diseases. Proteomics. 2011;11(16):3402–3414.
  • Nicholas B , Djukanovic R . Induced sputum: a window to lung pathology. Biochem Soc Trans. 2009;37(Pt 4):868–872.
  • Bowler RP , Ellison MC , Reisdorph N . Proteomics in pulmonary medicine. Chest. 2006;130(2):567–574.
  • Pelaia G , Terracciano R , Vatrella A , et al. Application of proteomics and peptidomics to COPD. BioMed Res Int. 2014;2014:764581.
  • Gray RD , MacGregor G , Noble D , et al. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med. 2008;178(5):444–452.
  • Lowrey GE , Henderson N , Blakey JD , et al. MMP-9 protein level does not reflect overall MMP activity in the airways of patients with COPD. Respir Med. 2008;102(6):845–851.
  • Casado B , Iadarola P , Pannell LK , et al. Protein expression in sputum of smokers and chronic obstructive pulmonary disease patients: a pilot study by CapLC-ESI-Q-TOF. J Proteome Res. 2007;6(12):4615–4623.
  • Keir HR , Fong CJ , Dicker AJ , et al. Profile of the ProAxsis active neutrophil elastase immunoassay for precision medicine in chronic respiratory disease. Expert Rev Mol Diagn. 2017;17(10):875–884.
  • Kalfopoulos M , Wetmore K , ElMallah MK . Pathophysiology of alpha-1 antitrypsin lung disease. Methods Mol Biol (Clifton, N.J.). 2017;1639:9–19.
  • Pandey KC , De S , Mishra PK . Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol. 2017;8(512):512.
  • Luisetti M , Ma S , Iadarola P , et al. Desmosine as a biomarker of elastin degradation in COPD: current status and future directions. Eur Respir J. 2008;32(5):1146–1157.
  • Ma S , Lin YY , Turino GM . Measurements of desmosine and isodesmosine by mass spectrometry in COPD. Chest. 2007;131(5):1363–1371.
  • Ma S , Lin YY , He J , et al. Alpha-1 antitrypsin augmentation therapy and biomarkers of elastin degradation. Copd. 2013;10(4):473–481.
  • Ma S , Lin YY , Cantor JO , et al. The effect of alpha-1 proteinase inhibitor on biomarkers of elastin degradation in alpha-1 antitrypsin deficiency: an analysis of the RAPID/RAPID extension trials. Chronic Obstr Pulm Dis. 2016;4(1):34–44.
  • Sethi S , Wrona C , Eschberger K , et al. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(5):491–497.
  • Ilumets H , Rytila PH , Sovijarvi AR , et al. Transient elevation of neutrophil proteinases in induced sputum during COPD exacerbation. Scand J Clin Lab Invest. 2008;68(7):618–623.
  • Polverino E , Rosales-Mayor E , Dale GE , et al. The role of neutrophil elastase inhibitors in lung diseases. Chest. 2017;152(2):249–262.
  • Vogelmeier C , Aquino TO , O’Brien CD , et al. A randomised, placebo-controlled, dose-finding study of AZD9668, an oral inhibitor of neutrophil elastase, in patients with chronic obstructive pulmonary disease treated with tiotropium. Copd. 2012;9(2):111–120.
  • Kuna P , Jenkins M , O’Brien CD , et al. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/formoterol in patients with COPD. Respir Med. 2012;106(4):531–539.
  • Dittrich AM , Meyer HA , Hamelmann E . The role of lipocalins in airway disease. Clin Exp Allergy. 2013;43(5):503–511.
  • Nicholas BL , Skipp P , Barton S , et al. Identification of lipocalin and apolipoprotein A1 as biomarkers of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181(10):1049–1060.
  • Wang XR , Li YP , Gao S , et al. Increased serum levels of lipocalin-1 and −2 in patients with stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:543–549.
  • Liu J , Pang Z , Wang G , et al. Advanced role of neutrophils in common respiratory diseases. J Immunol Res. 2017;2017:6710278.
  • Iwamoto H , Gao J , Koskela J , et al. Differences in plasma and sputum biomarkers between COPD and COPD-asthma overlap. Eur Respir J. 2014 Feb;43(2):421–429.
  • Eagan TM , Damas JK , Ueland T , et al. Neutrophil gelatinase-associated lipocalin: a biomarker in COPD. Chest. 2010;138(4):888–895.
  • Wang Y , Jia M , Yan X , et al. Increased neutrophil gelatinase-associated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease. Clin Sci (London, England: 1979). 2017;131(11):1147–1159.
  • Keatings VM , Barnes PJ . Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med. 1997;155(2):449–453.
  • Iwamoto H , Gao J , Koskela J , et al. Differences in plasma and sputum biomarkers between COPD and COPD-asthma overlap. Eur Respir J. 2014;43(2):421–429.
  • Gao J , Iwamoto H , Koskela J , et al. Characterization of sputum biomarkers for asthma-COPD overlap syndrome. Int J Chron Obstruct Pulmon Dis. 2016;11:2457–2465.
  • Churg A , Zhou S , Wright JL . Series “matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197–209.
  • Houghton AM . Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015;44–46:167–174.
  • Vernooy JH , Lindeman JH , Jacobs JA , et al. Increased activity of matrix metalloproteinase-8 and matrix metalloproteinase-9 in induced sputum from patients with COPD. Chest. 2004;126(6):1802–1810.
  • Culpitt SV , Rogers DF , Traves SL , et al. Sputum matrix metalloproteases: comparison between chronic obstructive pulmonary disease and asthma. Respir Med. 2005;99(6):703–710.
  • Simpson JL , McDonald VM , Baines KJ , et al. Influence of age, past smoking, and disease severity on TLR2, neutrophilic inflammation, and MMP-9 levels in COPD. Mediators of Inflammation. 2013;2013:462934.
  • Chaudhuri R , McSharry C , Brady J , et al. Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: relationship to disease severity. J Allergy Clin Immunol. 2012;129(3):655–663 e658.
  • Cane JL , Mallia-Millanes B , Forrester DL , et al. Matrix metalloproteinases −8 and −9 in the airways, blood and urine during exacerbations of COPD. Copd. 2016;13(1):26–34.
  • O’Reilly PJ , Jackson PL , Wells JM , et al. Sputum PGP is reduced by azithromycin treatment in patients with COPD and correlates with exacerbations. BMJ open. 2013;3(12):e004140.
  • Dahl R , Titlestad I , Lindqvist A , et al. Effects of an oral MMP-9 and −12 inhibitor, AZD1236, on biomarkers in moderate/severe COPD: a randomised controlled trial. Pulmonary Pharmacol Ther. 2012;25(2):169–177.
  • Stenken JA , Poschenrieder AJ . Bioanalytical chemistry of cytokines–a review. Anal Chim Acta. 2015;853:95–115.
  • Chung KF . Cytokines in chronic obstructive pulmonary disease. Eur Respir J. 2001;18(34):50s–59s.
  • Mukhopadhyay S , Hoidal JR , Mukherjee TK . Role of TNFalpha in pulmonary pathophysiology. Respir Res. 2006;7(1):125.
  • Keatings VM , Collins PD , Scott DM , et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–534.
  • Daldegan MB , Teixeira MM , Talvani A . Concentration of CCL11, CXCL8 and TNF-alpha in sputum and plasma of patients undergoing asthma or chronic obstructive pulmonary disease exacerbation. Braz J Med Biol Res. 2005;38(9):1359–1365.
  • Aaron SD , Angel JB , Lunau M , et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):349–355.
  • Sethi S , Muscarella K , Evans N , et al. Airway inflammation and etiology of acute exacerbations of chronic bronchitis. Chest. 2000;118(6):1557–1565.
  • Franciosi LG , Page CP , Celli BR , et al. Markers of disease severity in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2006;19(3):189–199.
  • Rincon M , Irvin CG . Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8(9):1281–1290.
  • Grubek-Jaworska H , Paplinska M , Hermanowicz-Salamon J , et al. IL-6 and IL-13 in induced sputum of COPD and asthma patients: correlation with respiratory tests. Respir Int Rev Thoracic Dis. 2012;84(2):101–107.
  • Donaldson GC , Seemungal TA , Patel IS , et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128(4):1995–2004.
  • Botelho FM , Bauer CM , Finch D , et al. IL-1alpha/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PloS one. 2011;6(12):e28457.
  • Sapey E , Ahmad A , Bayley D , et al. Imbalances between interleukin-1 and tumor necrosis factor agonists and antagonists in stable COPD. J Clin Immunol. 2009;29(4):508–516.
  • Yi G , Liang M , Li M , et al. A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells. Inflammation Res. 2018;67(6):539–551.
  • Singh R , Mackay AJ , Patel AR , et al. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir Res. 2014;15(1):114.
  • Fu JJ , McDonald VM , Baines KJ , et al. Airway IL-1beta and systemic inflammation as predictors of future exacerbation risk in asthma and COPD. Chest. 2015;148(3):618–629.
  • Bafadhel M , McKenna S , Terry S , et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184(6):662–671.
  • Damera G , Pham TH , Zhang J , et al. A sputum proteomic signature that associates with increased IL-1beta levels and bacterial exacerbations of COPD. Lung. 2016;194(3):363–369.
  • van der Vaart H , Koeter GH , Postma DS , et al. First study of infliximab treatment in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(4):465–469.
  • Rennard SI , Fogarty C , Kelsen S , et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(9):926–934.
  • Calverley PMA , Sethi S , Dawson M , et al. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir Res. 2017;18(1):153.
  • Pilette C , Ouadrhiri Y , Godding V , et al. Lung mucosal immunity: immunoglobulin-a revisited. Eur Respir J. 2001;18(3):571–588.
  • Johansen FE , Kaetzel CS . Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011;4(6):598–602.
  • Ohlmeier S , Mazur W , Linja-Aho A , et al. Sputum proteomics identifies elevated PIGR levels in smokers and mild-to-moderate COPD. J Proteome Res. 2012;11(2):599–608.
  • Polosukhin VV , Cates JM , Lawson WE , et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(3):317–327.
  • Agusti A , Gea J , Faner R . Biomarkers, the control panel and personalized COPD medicine. Respirology (Carlton, Vic.). 2016;21(1):24–33.
  • Zemans RL , Jacobson S , Keene J , et al. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir Res. 2017;18(1):117.
  • Thomsen M , Ingebrigtsen TS , Marott JL , et al. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. Jama. 2013;309(22):2353–2361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.