1,434
Views
42
CrossRef citations to date
0
Altmetric
Review

Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future

, , , , , , , , & show all
Pages 337-362 | Received 05 Dec 2018, Accepted 31 Jan 2019, Published online: 18 Feb 2019

References

  • Beck A, Reichert JM. Antibody-drug conjugates. MAbs. 2014;6(1):15–17.
  • Tvito A, Rowe JM. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia. Expert Opin Biol Ther. 2017;17(12):1557–1564.
  • Jen EY, Ko C-W, Lee JE, et al. FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24(14):3242–3246.
  • Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–337.
  • Martin C, Kizlik-Masson C, Pèlegrin A, et al. Antibody-drug conjugates: design and development for therapy and imaging in and beyond cancer, labex mabimprove industrial workshop, July 27 –28,2017, Tours, France. MAbs. 2018;10(2):210–221.
  • Egan PC, Reagan JL. The return of gemtuzumab ozogamicin: a humanized anti-CD33 monoclonal antibody–drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. Onco Targets Ther. 2018;11:8265–8272.
  • Beck A, Jean-Francois H, Thierry W, et al. The next generation of antibody-drug conjugates comes of age. Discov Med. 2010;10(53):329–339.
  • Norsworthy KJ, Ko C, Lee JE, et al. FDA approval summary: mylotarg for treatment of patients with relapsed or refractory CD33‐positive acute myeloid leukemia. Oncologist. 2018;23(9):1103–1108.
  • Kaplon H, Reichert JM. Antibodies to watch in 2018. MAbs. 2018;10(2):183–203.
  • Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2018 Dec 5. doi: 10.1080/19420862.2018.1556465. [Epub ahead of print].
  • O’Flaherty R, Trbojević-Akmačić I, Greville G, et al. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Rev Proteomics. 2018;15(1):13–29.
  • Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics. 2016;13(2):157–183.
  • Liu R, Chen X, Dushime J, et al. The impact of trisulfide modification of antibodies on the properties of antibody-drug conjugates manufactured using thiol chemistry. MAbs. 2017;9(3):490–497.
  • Liu-Shin LP-Y, Fung A, Malhotra A, et al. Evidence of disulfide bond scrambling during production of an antibody-drug conjugate. MAbs. 2018 Nov-Dec;10(8):1190-1199. doi: 10.1080/19420862.2018.1521128. Epub 2018 Oct 19.
  • Resemann A, Liu-Shin L, Tremintin G, et al. Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination. MAbs. 2018 Nov-Dec;10(8):1200-1213. doi: 10.1080/19420862.2018.1512328. Epub 2018 Oct 2.
  • Liu-Shin L, Fung A, Malhotra A, et al. Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates. MAbs. 2018;10(4):583–595.
  • Gong HH, Ihle N, Jones MT, et al. Control strategy for small molecule impurities in antibody-drug conjugates. AAPS PharmSciTech. 2018. DOI:10.1208/s12249-017-0943-6
  • Kretsinger J, Frantz N, Hart SA, et al. Expectations for phase-appropriate drug substance and drug product specifications for early-stage protein therapeutics. J Pharm Sci. 2018. DOI:10.1016/j.xphs.2018.11.042.
  • Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–352.
  • Rathore D, Faustino A, Schiel J, et al. The role of mass spectrometry in the characterization of biologic protein products. Expert Rev Proteomics. 2018;15(5):431–449.
  • Birdsall RE, McCarthy SM, Janin-Bussat MC, et al. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs. 2016;8(2):306–317.
  • Zmolek W, Bañas S, Barfield RM, et al. A simple LC/MRM–MS-based method to quantify free linker-payload in antibody-drug conjugate preparations. J Chromatogr B. 2016;1032:144–148.
  • Li Y, Gu C, Gruenhagen J, et al. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates. MAbs. 2016;8(4):698–705.
  • Friese OV, Smith JN, Brown PW, et al. Practical approaches for overcoming challenges in heightened characterization of antibody-drug conjugates with new methodologies and ultrahigh-resolution mass spectrometry. MAbs. 2018;10(3):335–345.
  • Neupane R, Bergquist J. Analytical techniques for the characterization of antibody drug conjugates: challenges and prospects. Eur J Mass Spectrom. 2017;23(6):417–426.
  • Wagh A, Song H, Zeng M, et al. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs. 2018;10(2):222–243.
  • Todoroki K, Yamada T, Mizuno H, et al. Current mass spectrometric tools for the bioanalyses of therapeutic monoclonal antibodies and antibody-drug conjugates. Anal Sci. 2018;34(4):397–406.
  • Chen T, Chen Y, Stella C, et al. Antibody-drug conjugate characterization by chromatographic and electrophoretic techniques. J Chromatogr B. 2016;1032:39–50.
  • Narhi LO, Schmit J, Bechtold-Peters K, et al. Classification of protein aggregates1. J Pharm Sci. 2012;101(2):493–498.
  • Parenky A, Myler H, Amaravadi L, et al. New FDA draft guidance on immunogenicity. Aaps J. 2014;16(3):499–503.
  • Fekete S, Beck A, Veuthey J, et al. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014;101:161–173.
  • Goyon A, Fekete S, Beck A, et al. Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins. J Chromatogr B. 2018;1092:368–378.
  • De Vos J, Kaal ER, Swart R, et al. Aqueous size-exclusion chromatographic separations of intact proteins under native conditions: effect of pressure on selectivity and efficiency. J Sep Sci. 2016;39(4):689–695.
  • Goyon A, Beck A, Veuthey J-L, et al. Comprehensive study on the effects of sodium and potassium additives in size exclusion chromatographic separations of protein biopharmaceuticals. J Pharm Biomed Anal. 2017;144:242–251.
  • Singla A, Bansal R, Joshi V, et al. Aggregation kinetics for IgG1-based monoclonal antibody therapeutics. Aaps J. 2016;18(3):689–702.
  • Wakankar A, Chen Y, Gokarn Y, et al. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011;3(2):161–172.
  • Goyon A, Beck A, Colas O, et al. Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. J Chromatogr A. 2017;1498:80–89.
  • Hong P, Koza S, Bouvier ESP. Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35(20):2923–2950.
  • Goyon A, D’Atri V, Colas O, et al. Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: feasibility assessment for future mass spectrometry hyphenation. J Chromatogr B. 2017;1065–1066:35–43.
  • Patel A, Gupta V, Hickey J, et al. Coformulation of broadly neutralizing antibodies 3BNC117 and PGT121: analytical challenges during preformulation characterization and storage stability studies. J Pharm Sci. 2018;107(12):3032–3046.
  • Yang R, Tang Y, Zhang B, et al. High resolution separation of recombinant monoclonal antibodies by size-exclusion ultra-high performance liquid chromatography (SE-UHPLC). J Pharm Biomed Anal. 2015;109:52–61.
  • Fekete S, Ganzler K, Guillarme D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2μm particles. J Pharm Biomed Anal. 2013;78–79:141–149.
  • Goyon A, Guillarme D, Fekete S. The importance of system band broadening in modern size exclusion chromatography. J Pharm Biomed Anal. 2017;135:50–60.
  • Rodriguez-Aller M, Guillarme D, Beck A, et al. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase. J Pharm Biomed Anal. 2016;118:393–403.
  • Debaene F, Bœuf A, Wagner-Rousset E, et al. Innovative native MS methodologies for antibody drug conjugate characterization: high resolution native MS and IM-MS for average DAR and DAR distribution assessment. Anal Chem. 2014;86(21):10674–10683.
  • Flynn MJ, Zammarchi F, Tyrer PC, et al. ADCT-301, a Pyrrolobenzodiazepine (PBD) dimer-containing Antibody-Drug Conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15(11):2709–2721.
  • D’Atri V, Pell R, Clarke A, et al. Is hydrophobic interaction chromatography the most suitable technique to characterize site-specific antibody-drug conjugates? J Chromatogr A. 2018. DOI:10.1016/j.chroma.2018.12.020
  • Cusumano A, Guillarme D, Beck A, et al. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: optimization of the phase system. J Pharm Biomed Anal. 2016;121:161–173.
  • Bobaly B, Beck A, Veuthey J-L, et al. Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. J Pharm Biomed Anal. 2016;131:124–132.
  • Chen B, Peng Y, Valeja SG, et al. Online hydrophobic interaction chromatography-mass spectrometry for top-down proteomics. Anal Chem. 2016;88(3):1885–1891.
  • Bobály B, Randazzo GM, Rudaz S, et al. Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. J Chromatogr A. 2017;1481:82–91.
  • Fekete S, Beck A, Veuthey J-L, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal. 2015;113:43–55.
  • Fekete S, Beck A, Fekete J, et al. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: salt gradient approach. J Pharm Biomed Anal. 2015;102:33–44.
  • Lau H, Pace D, Yan B, et al. Investigation of degradation processes in IgG1 monoclonal antibodies by limited proteolysis coupled with weak cation-exchange HPLC. J Chromatogr B. 2010;878(11–12):868–876.
  • Goyon A, Sciascera L, Clarke A, et al. Extending the limits of size exclusion chromatography: simultaneous separation of free payloads and related species from antibody drug conjugates and their aggregates. J Chromatogr A. 2018;1539:19–29.
  • Chen X, Nguyen M, Jacobson F, et al. Charge-based analysis of antibodies with engineered cysteines. MAbs. 2009;1(6):563–571.
  • Boylan NJ, Zhou W, Proos RJ, et al. Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. Bioconjug Chem. 2013;24(6):1008–1016.
  • Fekete S, Beck A, Wagner E, et al. Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatography. J Sep Sci. 2015;38(1):1–8.
  • Fekete S, Guillarme D, Sandra P, et al. Electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chem. 2016;88(1):480–507.
  • Bobály B, Fleury-Souverain S, Beck A, et al. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal. 2018;147:493–505.
  • Bobály B, Lauber M, Beck A, et al. Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. J Chromatogr A. 2018;1549:63–76.
  • Bobály B, D’Atri V, Lauber M, et al. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1096(March):1–10.
  • Fekete S, Molnár I, Guillarme D. Separation of antibody drug conjugate species by RPLC: A generic method development approach. J Pharm Biomed Anal. 2017;137:60–69.
  • Marcoux J, Champion T, Colas O, et al. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci. 2015;24(8):1210–1223.
  • Xu Y, Jiang G, Tran C, et al. RP-HPLC DAR characterization of site-specific antibody drug conjugates produced in a cell-free expression system. Org Process Res Dev. 2016;20(6):1034–1043.
  • Periat A, Fekete S, Cusumano A, et al. Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. J Chromatogr A. 2016;1448:81–92.
  • Bobály B, D’Atri V, Beck A, et al. Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic method development approach. J Pharm Biomed Anal. 2017;145:24–32.
  • D’Atri V, Fekete S, Stoll D, et al. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B. 2018;1080:37–41.
  • D’Atri V, Fekete S, Beck A, et al. Hydrophilic interaction chromatography hyphenated with mass spectrometry: a powerful analytical tool for the comparison of originator and biosimilar therapeutic monoclonal antibodies at the middle-up level of analysis. Anal Chem. 2017;89(3):2086–2092.
  • D’Atri V, Dumont E, Vandenheede I, et al. Hydrophilic interaction chromatography for the characterization of therapeutic monoclonal antibodies at protein, peptide, and glycan levels. LC-GC Eur. 2017;30:8.
  • Wang S, Liu AP, Yan Y, et al. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J Pharm Biomed Anal. 2018;154:468–475.
  • Stoll DR, Harmes DC, Staples GO, et al. Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem. 2018;90(9):5923–5929.
  • Hu S, Dovichi NJ. Capillary electrophoresis for the analysis of biopolymers. Anal Chem. 2002;74(12):2833–2850.
  • Zhang Z, Qu Y, Dovichi NJ. Capillary zone electrophoresis-mass spectrometry for bottom-up proteomics. TRAC-Trends Anal Chem. 2018;108:23–37.
  • Gahoual R, Giorgetti J, Beck A, et al. Biopharmaceutical applications of capillary electromigration methods. In: Poole C editor. Handbooks in Separation Science: Capillary electromigration separation methods. Elsevier; 2018. p. 453–480.
  • Gahoual R, Beck A, Leize-Wagner E, et al. Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B. 2016;1032:61–78.
  • Zhu Z, Lu JJ, Liu S. Protein separation by capillary gel electrophoresis: A review. Anal Chim Acta. 2012;709:21–31.
  • Goyon A, Excoffier M, Janin Bussat MC, et al. Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B. 2017;1066:119–128.
  • Goyon A, Francois YN, Colas O, et al. High-resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis. 2018;39(16):2083–2090.
  • Giorgetti J, D’Atri V, Canonge J, et al. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis – mass spectrometry: assessment and method validation. Talanta. 2018;178:530–537.
  • Gahoual R, Beck A, Y-N F, et al. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE-ESI-MS/MS. J Mass Spectrom. 2016;51(2):150–158.
  • Á S, Park SS, Santos M, et al. Multi-Site N-glycan mapping study 1: capillary electrophoresis – laser induced fluorescence. MAbs. 2016;8(1):56–64.
  • Salas-Solano O, Babu K, Park SS, et al. Intercompany study to evaluate the robustness of capillary isoelectric focusing technology for the analysis of monoclonal antibodies. Chromatographia. 2011;73(11–12):1137–1144.
  • Wu G, Yu C, Wang W, et al. Interlaboratory method validation of icIEF methodology for analysis of monoclonal antibodies. Electrophoresis. 2018;39(16):2091–2098.
  • Moritz B, Schnaible V, Kiessig S, et al. Evaluation of capillary zone electrophoresis for charge heterogeneity testing of monoclonal antibodies. J Chromatogr B. 2015;983–984:101–110.
  • Liu JP, Abid S, Lee MS. Analysis of monoclonal antibody chimeric BR96-doxorubicin immunoconjugate by sodium dodecyl sulfate-capillary gel electrophoresis with ultraviolet and laser-induced fluorescence detection. Anal Biochem. 1995;229(2):221–228.
  • Sun MMC, Beam KS, Cerveny CG, et al. Reduction−alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem. 2005;16(5):1282–1290.
  • Le LN, Moore JMR, Ouyang J, et al. Profiling antibody drug conjugate positional isomers: a system-of-equations approach. Anal Chem. 2012;84(17):7479–7486.
  • Chen L, Wang L, Shion H, et al. In-depth structural characterization of Kadcyla® (ado-trastuzumab emtansine) and its biosimilar candidate. MAbs. 2016;8(7):1210–1223.
  • Felten C, Salas-Solano O, Michels DA. Imaged capillary isoelectric focusing for charge-variant analysis of biopharmaceuticals. Bioprocess Int. 2011;9:48–53.
  • Ji JA, Liu J, Wang J. Formulation development for antibody-drug conjugates. In: Wang J, Shen W-C, Zaro JL, editors. Antibody-Drug Conjugates. Cham: Springer International Publishing; 2015. p. 79–95.
  • Adem YT, Schwarz KA, Duenas E, et al. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014;25(4):656–664.
  • Valliere-Douglass JF, Lewis P, Salas-Solano O, et al. Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules. J Pharm Sci. 2015;104(2):652–665.
  • Jeffrey SC, Burke PJ, Lyon RP, et al. A potent anti-CD70 antibody–drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem. 2013;24(7):1256–1263.
  • Lin J, Lazar AC. Detremination of charge heterogeneity and level of unconjugated antibody by imaged iCIEF. In: Ducry L, editor. Antibody-Drug Conjugates. Totowa, NJ: Humana Press; 2013. p. 295–302.
  • Labrijn AF, Buijsse AO, Etj VDB, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol. 2009;27(8):767–771.
  • Maeda E, Urakami K, Shimura K, et al. Charge heterogeneity of a therapeutic monoclonal antibody conjugated with a cytotoxic antitumor antibiotic, calicheamicin. J Chromatogr A. 2010;1217(45):7164–7171.
  • Luo Q, Chung HH, Borths C, et al. Structural characterization of a monoclonal antibody–maytansinoid immunoconjugate. Anal Chem. 2016;88(1):695–702.
  • Liu J, Zhao H, Volk KJ, et al. Analysis of monoclonal antibody and immunoconjugate digests by capillary electrophoresis and capillary liquid chromatography. J Chromatogr A. 1996;735(1–2):357–366.
  • Kubota K, Kobayashi N, Yabuta M, et al. Validation of capillary zone electrophoretic method for evaluating monoclonal antibodies and antibody-drug conjugates. Chromatography. 2016;37(3):117–124.
  • Henley WH, He Y, Mellors JS, et al. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength. J Chromatogr A. 2017;1523:72–79.
  • Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. Embo J. 2016;35(24):2634–2657.
  • Eschweiler JD, Kerr R, Rabuck-Gibbons J, et al. Sizing up protein-ligand complexes: the rise of structural mass spectrometry approaches in the pharmaceutical sciences. Annu Rev Anal Chem. 2017;10(1):25–44.
  • Pedro L, Quinn R. Native mass spectrometry in fragment-based drug discovery. Molecules. 2016;21(8):984.
  • Beck A, Sanglier-Cianférani S, Van Dorsselaer A, et al. Next generation antibody characterization by mass spectrometry. Anal Chem. 2012;84(11):4637–4646.
  • Beck A, Wagner-Rousset E, Ayoub D, et al. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–736.
  • Beck A, Debaene F, Diemer H, et al. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom. 2015;50(2):285–297.
  • Zhang H, Cui W, Gross ML. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett. 2014;588(2):308–317.
  • Debaene F, Wagner-Rousset E, Colas O, et al. Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and ‘bispecific’ monoclonal antibody formation. Anal Chem. 2013;85(20):9785–9792.
  • Rosati S, Yang Y, Barendregt A, et al. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat Protoc. 2014;9(4):967–976.
  • Beck A, Diemer H, Ayoub D, et al. Analytical characterization of biosimilar antibodies and Fc-fusion proteins. TRAC-Trends Anal Chem. 2013;48:81–95.
  • Rosati S, Rose RJ, Thompson NJ, et al. Exploring an orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew Chemie Int Ed. 2012;51(52):12992–12996.
  • Thompson NJ, Hendriks LJ, de Kruif J, et al. Complex mixtures of antibodies generated from a single production qualitatively and quantitatively evaluated by native orbitrap mass spectrometry. MAbs. 2014;6(1):197–203.
  • Thompson NJ, Rosati S, Heck AJR. Performing native mass spectrometry analysis on therapeutic antibodies. Methods. 2014;65(1):11–17.
  • Valliere-Douglass JF, McFee WA, Salas-Solano O. Native intact mass determination of antibodies conjugated with monomethyl auristatin E and F at Interchain Cysteine Residues. Anal Chem. 2012;84(6):2843–2849.
  • Rosati S, Van Den Bremer ET, Schuurman J, et al. In-depth qualitative and quantitative analysis of composite glycosylation profiles and other micro-heterogeneity on intact monoclonal antibodies by high-resolution native mass spectrometry using a modified orbitrap. MAbs. 2013;5(6):917–924.
  • Tian Y, Ruotolo BT. The growing role of structural mass spectrometry in the discovery and development of therapeutic antibodies. Analyst. 2018;143(11):2459–2468.
  • Göth M, Pagel K. Ion mobility–mass spectrometry as a tool to investigate protein–ligand interactions. Anal Bioanal Chem. 2017;409(18):4305–4310.
  • Ben-Nissan G, Sharon M. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol. 2018;42:25–33.
  • Hengel SM, Sanderson R, Valliere-Douglass J, et al. Measurement of in vivo drug load distribution of cysteine-linked antibody–drug conjugates using microscale liquid chromatography mass spectrometry. Anal Chem. 2014;86(7):3420–3425.
  • Chen J, Yin S, Wu Y, et al. Development of a native nanoelectrospray mass spectrometry method for determination of the drug-to-antibody ratio of antibody–drug conjugates. Anal Chem. 2013;85(3):1699–1704.
  • Dovgan I, Ursuegui S, Erb S, et al. Acyl fluorides: fast, efficient, and versatile lysine-based protein conjugation via plug-and-play strategy. Bioconjug Chem. 2017;28(5):1452–1457.
  • Koniev O, Dovgan I, Renoux B, et al. Reduction–rebridging strategy for the preparation of ADPN-based antibody–drug conjugates. Medchemcomm. 2018;9(5):827–830.
  • Botzanowski T, Erb S, Hernandez-Alba O, et al. Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs. 2017;9(5):801–811.
  • Ehkirch A, Hernandez-Alba O, Colas O, et al. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1086:(March):176–183.
  • Bern M, Caval T, Kil YJ, et al. Parsimonious charge deconvolution for native mass spectrometry. J Proteome Res. 2018;17(3):1216–1226.
  • Campuzano IDG, Netirojjanakul C, Nshanian M, et al. Native-MS analysis of monoclonal antibody conjugates by fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2018;90(1):745–751.
  • Muneeruddin K, Nazzaro M, Kaltashov IA. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry. Anal Chem. 2015;87(19):10138–10145.
  • Muneeruddin K, Thomas JJ, Salinas PA, et al. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal Chem. 2014;86(21):10692–10699.
  • Belov AM, Viner R, Santos MR, et al. Analysis of proteins, protein complexes, and organellar proteomes using sheathless capillary zone electrophoresis - native mass spectrometry. J Am Soc Mass Spectrom. 2017;28(12):2614–2634.
  • Fekete S, Veuthey J-L, Beck A, et al. Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J Pharm Biomed Anal. 2016;130:3–18.
  • Griaud F, Denefeld B, Lang M, et al. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs. 2017;9(5):820–830.
  • Sorensen M, Harmes DC, Stoll DR, et al. Comparison of originator and biosimilar therapeutic monoclonal antibodies using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. MAbs. 2016;8(7):1224–1234.
  • Stoll DR, Harmes DC, Danforth J, et al. Direct identification of rituximab main isoforms and subunit analysis by online selective comprehensive two-dimensional liquid chromatography-mass spectrometry. Anal Chem. 2015;87(16):8307–8315.
  • Sarrut M, Fekete S, M-C J-B, et al. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characteri. J Chromatogr B. 2016;1032:91–102.
  • Muneeruddin K, Bobst CE, Frenkel R, et al. Characterization of a pegylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS. Analyst. 2017;142(2):336–344.
  • Talebi M, Nordborg A, Gaspar A, et al. Charge heterogeneity profiling of monoclonal antibodies using low ionic strength ion-exchange chromatography and well-controlled pH gradients on monolithic columns. J Chromatogr A. 2013;1317:148–154.
  • Leblanc Y, Ramon C, Bihoreau N, et al. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: case study after a long-term storage at +5 °C. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1048:130–139.
  • Füssl F, Trappe A, Cook K, et al. Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution orbitrap mass spectrometry. MAbs. 2019 Jan;11(1):116-128. doi: 10.1080/19420862.2018.1531664. Epub 2018 Nov 11.
  • Füssl F, Cook K, Scheffler K, et al. Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal Chem. 2018;90(7):4669–4676.
  • Bailey AO, Han G, Phung W, et al. Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis. MAbs. 2018 Nov-Dec;10(8):1214-1225. doi: 10.1080/19420862.2018.1521131. Epub 2018 Oct 19.
  • Chen B, Lin Z, Alpert AJ, et al. Online hydrophobic interaction chromatography − mass spectrometry for the analysis of intact monoclonal antibodies. Anal Chem. 2018;90:8–11.
  • D’Atri V, Causon T, Hernandez-Alba O, et al. Adding a new separation dimension to MS and LC-MS: what is the utility of ion mobility spectrometry? J Sep Sci. 2018;41(1):20–67.
  • Hernandez-Alba O, Wagner-Rousset E, Beck A, et al. Collision-induced unfolding for conformational characterization of IgG4 monoclonal antibodies. Anal Chem. 2018;90(15):8865–8872.
  • Devine PWA, Fisher HC, Calabrese AN, et al. Investigating the structural compaction of biomolecules upon transition to the gas-phase using ESI-TWIMS-MS. J Am Soc Mass Spectrom. 2017 Sep;28(9):1855-1862. doi: 10.1007/s13361-017-1689-9. Epub 2017 May 8.
  • Ruotolo BT, Benesch JLP, Sandercock AM, et al. Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3(7):1139–1152.
  • Hansen K, Lau AMC, Giles K, et al. A mass spectrometry-based modelling workflow for accurate prediction of IgG antibody conformations in the gas phase. Angew Chemie Int Ed. 2018. DOI:10.1002/anie.201812018.
  • Pacholarz KJ, Porrini M, Garlish RA, et al. Dynamics of intact immunoglobulin-G explored by drift-tube ion-mobility mass spectrometry and molecular modeling. Angew Chemie Int Ed. 2014;53(30):7765–7769.
  • Tian Y, Han L, Buckner AC, et al. Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal Chem. 2015;87(22):11509–11515.
  • Watanabe Y, Vasiljevic S, Allen JD, et al. Signature of antibody domain exchange by native mass spectrometry and collision-induced unfolding. Anal Chem. 2018;90(12):7325–7331.
  • Ferguson CN, Gucinski-Ruth AC. Evaluation of ion mobility-mass spectrometry for comparative analysis of monoclonal antibodies. J Am Soc Mass Spectrom. 2016;27(5):822–833.
  • Pisupati K, Tian Y, Okbazghi S, et al. A multidimensional analytical comparison of remicade and the biosimilar remsima. Anal Chem. 2017;89(9):4838–4846.
  • Migas LG, France AP, Bellina B, Barran PE. ORIGAMI. A software suite for activated ion mobility mass spectrometry (aIM-MS) applied to multimeric protein assemblies. Int J Mass Spectrom. 2018;427:20–28.
  • Eschweiler JD, Rabuck-Gibbons JN, Tian Y, et al. CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas-phase protein ions. Anal Chem. 2015;87(22):11516–11522.
  • Janin-Bussat M-C, Dillenbourg M, Corvaia N, et al. Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC–MS analysis. J Chromatogr B. 2015;981–982:9–13.
  • Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev. 2009;28(1):147–176.
  • Mitchell Wells J, McLuckey SA. 1Collision‐induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005;402:148-185.
  • Fornelli L, Ayoub D, Aizikov K, et al. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field orbitrap mass spectrometer. J Proteomics. 2017;159:67–76.
  • Tsybin YO, Fornelli L, Stoermer C, et al. Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal Chem. 2011;83(23):8919–8927.
  • He L, Anderson LC, Barnidge DR, et al. Erratum to: analysis of monoclonal antibodies in human serum as a model for clinical monoclonal gammopathy by use of 21 tesla FT-ICR top-down and middle-down MS/MS. J Am Soc Mass Spectrom. 2017;28(5):839.
  • Fornelli L, Damoc E, Thomas PM, et al. Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS. Mol Cell Proteomics. 2012;11(12):1758–1767.
  • Mao Y, Valeja SG, Rouse JC, et al. Top-down structural analysis of an intact monoclonal antibody by electron capture dissociation-fourier transform ion cyclotron resonance-mass spectrometry. Anal Chem. 2013;85(9):4239–4246.
  • Fornelli L, Srzentić K, Huguet R, et al. Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple ion activation techniques. Anal Chem. 2018;90(14):8421–8429.
  • Cotham VC, Brodbelt JS. Characterization of therapeutic monoclonal antibodies at the subunit-level using middle-down 193 nm ultraviolet photodissociation. Anal Chem. 2016;88(7):4004–4013.
  • Hernandez-Alba O, Houel S, Erb S, et al. A comprehensive characterization of a site-specific antibody-drug-conjugate by middle-down MS with multiple fragmentation techniques. MAbs. Submitted to.
  • Dyachenko A, Wang G, Belov M, et al. Tandem native mass-spectrometry on antibody–drug conjugates and submillion Da antibody–antigen protein assemblies on an orbitrap EMR equipped with a high-mass quadrupole mass selector. Anal Chem. 2015;87(12):6095–6102.
  • Huang RY-C, Chen G. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry. Anal Bioanal Chem. 2014;406(26):6541–6558.
  • Houde D, Arndt J, Domeier W, et al. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2009;81(14):5966.
  • Houde D, Peng Y, Berkowitz SA, et al. Post-translational modifications differentially affect igg1 conformation and receptor binding. Mol Cell Proteomics. 2010;9(8):1716–1728.
  • Iacob RE, Krystek SR, Huang RY-C, et al. Hydrogen/deuterium exchange mass spectrometry applied to IL-23 interaction characteristics: potential impact for therapeutics. Expert Rev Proteomics. 2015;12(2):159–169.
  • Huang RY-C, Krystek SR, Felix N, et al. Hydrogen/deuterium exchange mass spectrometry and computational modeling reveal a discontinuous epitope of an antibody/TL1A Interaction. MAbs. 2018;10(1):95–103.
  • Terral G, Champion T, Debaene F, et al. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs. 2017;9(8):1317–1326.
  • Pan LY, Salas-Solano O, Valliere-Douglass JF. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2014;86(5):2657–2664.
  • Pan LY, Salas-Solano O, Valliere-Douglass JF. Antibody structural integrity of site-specific antibody-drug conjugates investigated by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2015;87(11):5669–5676.
  • Huang RY-C, O’Neil SR, Lipovšek D, et al. Conformational assessment of adnectin and adnectin-drug conjugate by hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2018;29(7):1524–1531.
  • Pan LY, Salas-Solano O, Valliere-Douglass JF. Localized conformational interrogation of antibody and antibody-drug conjugates by site-specific carboxyl group footprinting. MAbs. 2017;9(2):307–318.
  • Wang X, Buckenmaier S, Stoll D. The growing role of two-dimensional LC in the biopharmaceutical industry. J Appl Bioanal. 2017;3(5):120–126.
  • Li Y, Gu C, Gruenhagen J, et al. A size exclusion-reversed phase two dimensional-liquid chromatography methodology for stability and small molecule related species in antibody drug conjugates. J Chromatogr A. 2015;1393:81–88.
  • Li Y, Stella C, Zheng L, et al. Investigation of low recovery in the free drug assay for antibody drug conjugates by size exclusion—reversed phase two dimensional-liquid chromatography. J Chromatogr B. 2016;1032:112–118.
  • Vanhoenacker G, Vandenheede I, David F, et al. Comprehensive two-dimensional liquid chromatography of therapeutic monoclonal antibody digests. Anal Bioanal Chem. 2015;407(1):355–366.
  • Ehkirch A, D’Atri V, Rouviere F, et al. An online four-dimensional HIC×SEC-IM×MS methodology for proof-of-concept characterization of antibody drug conjugates. Anal Chem. 2018;90(3):1578–1586.
  • Ehkirch A, Goyon A, Hernandez-Alba O, et al. A novel online four-dimensional SEC×SEC-IM×MS methodology for characterization of monoclonal antibody size variants. Anal Chem. 2018;90(23):13929–13937.
  • Gahoual R, Busnel J-M, Wolff P, et al. Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes. Anal Bioanal Chem. 2014;406(4):1029–1038.
  • Höcker O, Montealegre C, Neusüß C. Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem. 2018;410(21):5265–5275.
  • Said N, Giorgetti J, Kuhn L, et al. Advanced antibody–drug conjugate structural characterization by sheathless capillary electrophoresis–tandem mass spectrometry using complementary approaches. LCGC North Am. 2017;15(1):15–21.
  • Said N, Gahoual R, Kuhn L, et al. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis – tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta. 2016;918:50–59.
  • Dada OO, Zhao Y, Jaya N, et al. High-resolution capillary zone electrophoresis with mass spectrometry peptide mapping of therapeutic proteins: peptide recovery and post-translational modification analysis in monoclonal antibodies and antibody–drug conjugates. Anal Chem. 2017;89(21):11236–11242.
  • Belov AM, Zang L, Sebastiano R, et al. Complementary middle-down and intact monoclonal antibody proteoform characterization by capillary zone electrophoresis - mass spectrometry. Electrophoresis. 2018;39(16):2069–2082.
  • Haselberg R, De Vijlder T, Heukers R, et al. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta. 2018;1044:181–190.
  • Giorgetti J, Lechner A, Del Nero E, et al. Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. Eur J Mass Spectrom. 2018;146906671880779.
  • Redman EA, Mellors JS, Starkey JA, et al. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis–mass spectrometry. Anal Chem. 2016;88(4):2220–2226.
  • Jooß K, Hühner J, Kiessig S, et al. Two-dimensional capillary zone electrophoresis–mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal Bioanal Chem. 2017;409(26):6057–6067.
  • Montealegre C, Neusüß C. Coupling imaged capillary isoelectric focusing with mass spectrometry using a nanoliter valve. Electrophoresis. 2018;39(9–10):1151–1154.
  • Byeon -J-J, Park M-H, Shin S-H, et al. A single liquid chromatography-quadrupole time-of-flight mass spectrometric method for the quantification of total antibody, antibody-conjugated drug and free payload of antibody-drug conjugates. Biomed Chromatogr. 2018;32(7):e4229.
  • Sugimoto H, Ghosh D, Chen S, et al. Immunocapture-LC/MS-based target engagement measurement in tumor plasma membrane. Anal Chem. 2018;90:13564–13571. acs.analchem.8b03726.
  • Dong L, Li C, Locuson C, et al. A two-step immunocapture LC/MS/MS assay for plasma stability and payload migration assessment of cysteine–maleimide-based antibody drug conjugates. Anal Chem. 2018;90(10):5989–5994.
  • Anami Y, Yamazaki CM, Xiong W, et al. Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nat Commun. 2018;9(1):2512.
  • Leipold DD, Figueroa I, Masih S, et al. Preclinical pharmacokinetics and pharmacodynamics of DCLL9718A: an antibody-drug conjugate for the treatment of acute myeloid leukemia. MAbs. 2018 Nov-Dec;10(8):1312-1321. doi: 10.1080/19420862.2018.1517565. Epub 2018 Oct 2.
  • He J, Su D, Ng C, et al. High-resolution accurate-mass mass spectrometry enabling in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates. Anal Chem. 2017;89(10):5476–5483.
  • Su D, Kozak KR, Sadowsky J, et al. Modulating antibody–drug conjugate payload metabolism by conjugation site and linker modification. Bioconjug Chem. 2018;29(4):1155–1167.
  • Jin W, Burton L, Moore I. LC–HRMS quantitation of intact antibody drug conjugate trastuzumab emtansine from rat plasma. Bioanalysis. 2018;10(11):851–862.
  • Li BT, Shen R, Buonocore D, et al. Ado-trastuzumab emtansine for patients with HER2 -mutant lung cancers: results from a Phase II basket trial. J Clin Oncol. 2018;36(24):2532–2537.
  • Su D, Ng C, Khosraviani M, et al. Custom-designed affinity capture LC-MS F(ab′)2 assay for biotransformation assessment of site-specific antibody drug conjugates. Anal Chem. 2016;88(23):11340–11346.
  • King GT, Eaton KD, Beagle BR, Zopf CJ, Wong GY, Krupka HI, et al. A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Invest New Drugs. 2018;36(5):836–847.
  • Shi C, Goldberg S, Lin T, et al. Bioanalytical workflow for novel scaffold protein–drug conjugates: quantitation of total Centyrin protein, conjugated Centyrin and free payload for Centyrin–drug conjugate in plasma and tissue samples using liquid chromatography–tandem mass spectrometry. Bioanalysis. 2018;10(20):1651–1665.
  • Shi C, Goldberg S, Lin T, et al. LC/MS/MS bioanalysis of protein–drug conjugates—the importance of incorporating succinimide hydrolysis products. Anal Chem. 2018;90(8):5314–5321.
  • Excoffier M, M-C J-B, Beau-Larvor C, et al. A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species. J Chromatogr B. 2016;1032:149–154.
  • Li KS, Chu PY, Fourie-O’Donohue A, et al. Automated on-tip affinity capture coupled with mass spectrometry to characterize intact antibody-drug conjugates from blood. J Am Soc Mass Spectrom. 2018;29(7):1532–1537.
  • He J, Yu S-F, Yee S, et al. Characterization of in vivo biotransformations for trastuzumab emtansine by high-resolution accurate-mass mass spectrometry. MAbs. 2018;1–8.
  • Walles M, Rudolph B, Wolf T, et al. New insights in tissue distribution, metabolism, and excretion of [3H]-labeled antibody maytansinoid conjugates in female tumor-bearing nude rats. Drug Metab Dispos. 2016;44(7):897–910.
  • Lanshoeft C, Stutz G, Elbast W, et al. Analysis of small molecule antibody-drug conjugate catabolites in rat liver and tumor tissue by liquid extraction surface analysis micro-capillary liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(7):823–832.
  • Kraynov E, Kamath AV, Walles M, et al. Current approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paper. Drug Metab Dispos. 2016;44(5):617–623.
  • Davis JA, Kagan M, Read J, et al. Immunoprecipitation middle-up LC–MS for in vivo drug-to-antibody ratio determination for antibody–drug conjugates. Bioanalysis. 2017;9(20):1535–1549.
  • Walles M, Connor A, Hainzl D. ADME and safety aspects of non-cleavable linkers in drug discovery and development. Curr Top Med Chem. 2018;17(32):3463–3475.
  • Taplin S, Vashisht K, Walles M, et al. Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings. J Appl Toxicol. 2018;38(5):600–615.
  • Sun X, Ponte JF, Yoder NC, et al. Effects of drug–antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody–maytansinoid conjugates. Bioconjug Chem. 2017;28(5):1371–1381.
  • Shadid M, Bowlin S, Bolleddula J. Catabolism of antibody drug conjugates and characterization methods. Bioorg Med Chem. 2017;25(12):2933–2945.
  • Snyder JT, Malinao M-C, Dugal-Tessier J, et al. Metabolism of an oxime-linked antibody drug conjugate, AGS62P1, and characterization of its identified metabolite. Mol Pharm. 2018;15(6):2384–2390.
  • Stoll D, Danforth J, Zhang K, et al. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B. 2016;1032:51–60.
  • Srzentić K, Nagornov KO, Fornelli L, et al. Multiplexed middle-down mass spectrometry as a method for revealing light and heavy chain connectivity in a monoclonal antibody. Anal Chem. 2018;90(21):12527–12535.
  • Zheng K, Chen Y, Wang J, et al. Characterization of ring-opening reaction of succinimide linkers in ADCs. J Pharm Sci. 2019;108(1):133–141.
  • van Berkel SS, van Delft FL. Enzymatic strategies for (near) clinical development of antibody-drug conjugates. Drug Discov Today Technol. 2018;30:3–10.
  • Lyon R. Drawing lessons from the clinical development of antibody-drug conjugates. Drug Discov Today Technol. 2018;30:105–109.
  • Deonarain MP. Miniaturised ‘antibody’-drug conjugates for solid tumours? Drug Discov Today Technol. 2018;30:47–53.
  • Cazzamalli S, Dal Corso A, Widmayer F, et al. Chemically defined antibody– and small molecule–drug conjugates for in vivo tumor targeting applications: a comparative analysis. J Am Chem Soc. 2018;140(5):1617–1621.
  • Kumar A, Kinneer K, Masterson L, et al. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg Med Chem Lett. 2018;28(23–24):3617–3621.
  • Kumar A, Kinneer K, Masterson L, et al. Characterization and in vitro data of antibody drug conjugates (ADCs) derived from heterotrifunctional linker designed for the site-specific preparation of dual ADCs. Data BR. 2018;21:2208–2220.
  • Maruani A. Bispecifics and antibody–drug conjugates: A positive synergy. Drug Discov Today Technol. 2018;30:55–61.
  • S Xin W-L, Zhou C, Kamath AV, et al. Minimal physiologically-based pharmacokinetic modeling of DSTA4637A, A novel THIOMABTM antibody antibiotic conjugate against staphylococcus aureus, in a mouse model. MAbs. 2018 Oct;10(7):1131-1143. doi: 10.1080/19420862.2018.1494478. Epub 2018 Aug 6.
  • Zhou C, Lehar S, Gutierrez J, et al. Pharmacokinetics and pharmacodynamics of DSTA4637A: A novel THIOMABTM antibody antibiotic conjugate against staphylococcus aureus in mice. MAbs. 2016;8(8):1612–1619.
  • Mantaj J, Jackson PJM, Rahman KM, et al. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chemie Int Ed. 2017;56(2):462–488.
  • Jackson PJM, Kay S, Pysz I, et al. Use of pyrrolobenzodiazepines and related covalent-binding DNA-interactive molecules as ADC payloads: is mechanism related to systemic toxicity? Drug Discov Today Technol. 2018;30:71–83.
  • Ambrogelly A, Gozo S, Katiyar A, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs. 2018;10(4):513–538.
  • Nowak C, Cheung JK, Dellatore SM, et al. Forced degradation of recombinant monoclonal antibodies: A practical guide. MAbs. 2017;9(8):1217–1230.
  • Xu Y, Wang D, Mason B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs. 2018;1–26.
  • Lakayan D, Haselberg R, Gahoual R, et al. Affinity profiling of monoclonal antibody and antibody-drug-conjugate preparations by coupled liquid chromatography-surface plasmon resonance biosensing. Anal Bioanal Chem. 2018;410(30):7837–7848.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.