402
Views
4
CrossRef citations to date
0
Altmetric
Review

Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma

, &
Pages 553-568 | Received 17 Mar 2019, Accepted 29 May 2019, Published online: 05 Jun 2019

References

  • Fitzmorris P, Singal AK. Surveillance and diagnosis of hepatocellular carcinoma. Gastroenterol Hepatol. 2015 Jan;11(1):38–46. PubMed PMID: 27099571; PubMed Central PMCID: PMC4836577. eng.
  • Brennan DJ, O’Connor DP, Rexhepaj E, et al. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. [Research Support, Non-U.S. Gov’t Review]. Nat Rev Cancer. 2010 Sep;10(9):605–617. PubMed PMID: 20720569; eng.
  • Behne T, Copur MS. Biomarkers for hepatocellular carcinoma. Int J Hepatol. 2012;2012:859076. PubMed PMID: 22655201; PubMed Central PMCID: PMC3357951. eng.
  • Diamandis EP. Identification of serum amyloid a protein as a potentially useful biomarker for nasopharyngeal carcinoma. [Comment Letter]. Clin Cancer Res. 2004 Aug 1;10(15):5293; author reply 5293–4. PubMed PMID: 15297433; eng.
  • Furukawa K, Kobata A. Protein glycosylation. [Research Support, Non-U.S. Gov’t Review]. Curr Opin Biotechnol. 1992 Oct;3(5):554–559. PubMed PMID: 1368939; eng.
  • Pagel O, Loroch S, Sickmann A, et al. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. [Research Support, Non-U.S. Gov’t Review]. Expert Rev Proteomics. 2015 Jun;12(3):235–253. PubMed PMID: 25955281; PubMed Central PMCID: PMC4487610. eng.
  • Caplan A, Kratz A. Prostate-specific antigen and the early diagnosis of prostate cancer. [Review]. Am J Clin Pathol. 2002 Jun;117(Suppl):S104–8.
  • Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. [Research Support, N.I.H., Extramural Review]. Anal Chem. 2012 Apr 3;84(7):3040–3048. PubMed PMID: 22360375; PubMed Central PMCID: PMC3319649. eng.
  • El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. [Review]. Gastroenterology. 2007 Jun;132(7):2557–2576.
  • Zhou L, Liu J, Luo F. Serum tumor markers for detection of hepatocellular carcinoma. [Review]. World J Gastroenterol. 2006 Feb 28;12(8):1175–1181. PubMed PMID: 16534867; PubMed Central PMCID: PMC4124425. eng.
  • El-Serag HB, Davila JA. Surveillance for hepatocellular carcinoma: in whom and how? Therap Adv Gastroenterol. 2011 Jan;4(1):5–10. PubMed PMID: 21317990; PubMed Central PMCID: PMC3036965. eng.
  • Sherman M. Alphafetoprotein: an obituary. [Comment Editorial]. J Hepatol. 2001 Apr;34(4):603–605. PubMed PMID: 11394662; eng.
  • Gomaa AI, Khan SA, Leen EL, et al. Diagnosis of hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t Review]. World J Gastroenterol. 2009 Mar 21;15(11):1301–1314. PubMed PMID: 19294759; PubMed Central PMCID: PMC2658831. eng.
  • Aoyagi Y, Suzuki Y, Isemura M, et al. The fucosylation index of alpha-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma. [Comparative Study Research Support, Non-U.S. Gov’t]. Cancer. 1988 Feb 15;61(4):769–774. PubMed PMID: 2448024; eng.
  • Aoyagi Y, Isokawa O, Suda T, et al. The fucosylation index of alpha-fetoprotein as a possible prognostic indicator for patients with hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. Cancer. 1998 Nov 15;83(10):2076–2082. PubMed PMID: 9827711; eng.
  • Gish RG. Early detection of hepatocellular carcinoma through surveillance using biomarkers. Gastroenterol Hepatol. 2014 Feb;10(2):121–123. PubMed PMID: 24803876; PubMed Central PMCID: PMC4011377. eng.
  • Spangenberg HC, Thimme R, Blum HE. Serum markers of hepatocellular carcinoma. [Review]. Semin Liver Dis. 2006 Nov;26(4):385–390.
  • Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. [Comparative Study]. N Engl J Med. 1993 Jun 24;328(25):1802–1806. PubMed PMID: 7684823; eng.
  • Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001 Nov;313(1–2):15–19. PubMed PMID: 11694234; eng.
  • Kaibori M, Matsui Y, Yanagida H, et al. Positive status of alpha-fetoprotein and des-gamma-carboxy prothrombin: important prognostic factor for recurrent hepatocellular carcinoma. World J Surg. 2004 Jul;28(7):702–707. PubMed PMID: 15185000; eng.
  • Leerapun A, Suravarapu SV, Bida JP, et al. The utility of lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clin Gastroenterol Hepatol. 2007 Mar;5(3):394–402; quiz 267. PubMed PMID: 17368240; PubMed Central PMCID: PMC1931510. eng.
  • Naraki T, Kohno N, Saito H, et al. gamma-carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombin. [Comparative Study]. Biochim Biophys Acta. 2002 Apr 24;1586(3):287–298. PubMed PMID: 11997080; eng.
  • Miyaaki H, Nakashima O, Kurogi M, et al. Lens culinaris agglutinin-reactive alpha-fetoprotein and protein induced by vitamin K absence II are potential indicators of a poor prognosis: a histopathological study of surgically resected hepatocellular carcinoma. J Gastroenterol. 2007 Dec;42(12):962–968. PubMed PMID: 18085353; eng.
  • Shirabe K, Itoh S, Yoshizumi T, et al. The predictors of microvascular invasion in candidates for liver transplantation with hepatocellular carcinoma-with special reference to the serum levels of des-gamma-carboxy prothrombin. J Surg Oncol. 2007 Mar 1;95(3):235–240. PubMed PMID: 17323337; eng.
  • Yuen MF, Lai CL. Serological markers of liver cancer. [Review]. Best Pract Res Clin Gastroenterol. 2005 Feb;19(1):91–99.
  • Filmus J. The contribution of in vivo manipulation of gene expression to the understanding of the function of glypicans. [Review]. Glycoconj J. 2002 May - Jun;19(4–5):319–323.
  • Sung YK, Hwang SY, Park MK, et al. Glypican-3 is overexpressed in human hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. Cancer Sci. 2003 Mar; 94(3):259–262. PubMed PMID: 12824919; eng.
  • Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. Gastroenterology. 2003 Jul; 125(1):89–97. PubMed PMID: 12851874; eng.
  • Libbrecht L, Severi T, Cassiman D, et al. Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol. 2006 Nov;30(11):1405–1411. PubMed PMID: 17063081; eng.
  • Kladney RD, Cui X, Bulla GA, et al. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. [Research Support, U.S. Gov’t, Non-P.H.S.]. Hepatology. 2002 Jun;35(6):1431–1440. PubMed PMID: 12029628; eng.
  • Hu JS, Wu DW, Liang S, et al. GP73, a resident Golgi glycoprotein, is sensibility and specificity for hepatocellular carcinoma of diagnosis in a hepatitis B-endemic Asian population. [Comparative Study]. Med Oncol. 2010 Jun;27(2):339–345. PubMed PMID: 19399652; eng.
  • Ito Y, Takeda T, Sakon M, et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer. 2001 May 18;84(10):1377–1383. PubMed PMID: 11355950; PubMed Central PMCID: PMC2363640. eng.
  • Berasain C, Ujue Latasa M, Urtasun R, et al. Epidermal growth factor receptor (EGFR) crosstalks in liver cancer. Cancers (Basel). 2011 May 18;3(2):2444–2461. PubMed PMID: 24212818; PubMed Central PMCID: PMC3757426. eng.
  • Matsui A, Mochida S, Ohno A, et al. Plasma osteopontin levels in patients with fulminant hepatitis. Hepatol Res. 2004 Aug;29(4):202–206. PubMed PMID: 15288011; eng.
  • Shang S, Plymoth A, Ge S, et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Hepatology. 2012 Feb;55(2):483–490. PubMed PMID: 21953299; PubMed Central PMCID: PMC3914762. eng.
  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Cell. 2006 Sep 8;126(5):855–867. PubMed PMID: 16959566; eng.
  • Dobryszycka W. Biological functions of haptoglobin–new pieces to an old puzzle. [Review]. Eur J Clin Chem Clin Biochem. 1997 Sep;35(9):647–654. PubMed PMID: 9352226; eng.
  • Nakano M, Nakagawa T, Ito T, et al. Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers. [Research Support, Non-U.S. Gov’t]. Int J Cancer. 2008 May 15;122(10):2301–2309. PubMed PMID: 18214858; eng.
  • Okuyama N, Ide Y, Nakano M, et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. [Research Support, Non-U.S. Gov’t]. Int J Cancer. 2006 Jun 1;118(11):2803–2808. PubMed PMID: 16385567; eng.
  • Arnold JN, Saldova R, Galligan MC, et al. Novel glycan biomarkers for the detection of lung cancer. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Proteome Res. 2011 Apr 1;10(4):1755–1764. PubMed PMID: 21214223; eng.
  • Hoagland L, Campa MJ, Gottlin EB, et al. Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer. 2007 Nov 15;110(10):2260–2268. PubMed PMID: 17918261; eng.
  • Ang IL, Poon TC, Lai PB, et al. Study of serum haptoglobin and its glycoforms in the diagnosis of hepatocellular carcinoma: a glycoproteomic approach. [Research Support, Non-U.S. Gov’t]. J Proteome Res. 2006 Oct;5(10):2691–2700. PubMed PMID: 17022640; eng.
  • Lin Z, Simeone DM, Anderson MA, et al. Mass spectrometric assay for analysis of haptoglobin fucosylation in pancreatic cancer. [Comparative Study Research Support, N.I.H., Extramural]. J Proteome Res. 2011 May 6;10(5):2602–2611. PubMed PMID: 21417406; PubMed Central PMCID: PMC3090531. eng.
  • Zhao J, Patwa TH, Qiu W, et al. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Proteome Res. 2007 May;6(5):1864–1874. PubMed PMID: 17428079; eng.
  • Sanda M, Pompach P, Brnakova Z, et al. Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease. [Research Support, N.I.H., Extramural]. Mol Cell Proteomics. 2013 May;12(5):1294–1305. PubMed PMID: 23389048; PubMed Central PMCID: PMC3650340. eng.
  • Hashimoto S, Asao T, Takahashi J, et al. alpha1-acid glycoprotein fucosylation as a marker of carcinoma progression and prognosis. Cancer. 2004 Dec 15;101(12):2825–2836. PubMed PMID: 15536618; eng.
  • Song EY, Kim KA, Kim YD, et al. Elevation of serum asialo-alpha(1) acid glycoprotein concentration in patients with hepatic cirrhosis and hepatocellular carcinoma as measured by antibody-lectin sandwich assay. Hepatol Res. 2003 Aug;26(4):311–317. PubMed PMID: 12963431; eng
  • Bachtiar I, Kheng V, Wibowo GA, et al. Alpha-1-acid glycoprotein as potential biomarker for alpha-fetoprotein-low hepatocellular carcinoma. BMC Res Notes. 2010 Nov;23(3):319. . PubMed PMID: 21092242; PubMed Central PMCID: PMC2999612. eng.
  • Zhang D, Huang J, Luo D, et al. Glycosylation change of alpha-1-acid glycoprotein as a serum biomarker for hepatocellular carcinoma and cirrhosis. Biomark Med. 2017 May;11(5):423–430. PubMed PMID: 28621608; eng.
  • Liang Y, Ma T, Thakur A, et al. Differentially expressed glycosylated patterns of alpha-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. [Research Support, Non-U.S. Gov’t]. Glycobiology. 2015 Mar;25(3):331–340. PubMed PMID: 25347993; eng.
  • Elliott PR, Pei XY, Dafforn TR, et al. Topography of a 2.0 A structure of alpha1-antitrypsin reveals targets for rational drug design to prevent conformational disease. [Research Support, Non-U.S. Gov’t]. Protein Sci. 2000 Jul;9(7):1274–1281. PubMed PMID: 10933492; PubMed Central PMCID: PMC2144685. eng.
  • Ishihara T, Fukuda I, Morita A, et al. Development of quantitative plasma N-glycoproteomics using label-free 2-D LC-MALDI MS and its applicability for biomarker discovery in hepatocellular carcinoma. J Proteomics. 2011 Sep 6;74(10):2159–2168.
  • Ji ES, Hwang H, Park GW, et al. Analysis of fucosylation in liver-secreted N-glycoproteins from human hepatocellular carcinoma plasma using liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem. 2016 Nov;408(27):7761–7774. PubMed PMID: 27565792; eng.
  • Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in cancer biology. J Biochem. 2008 Jun;143(6):725–729. [Review].
  • Shang S, Li W, Qin X, et al. Aided diagnosis of hepatocellular carcinoma using serum fucosylated haptoglobin ratios. J Cancer. 2017;8(5):887–893. . PubMed PMID: 28382152; PubMed Central PMCID: PMC5381178. eng.
  • Pla-Roca M, Leulmi RF, Tourekhanova S, et al. Antibody colocalization microarray: a scalable technology for multiplex protein analysis in complex samples. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2012 Apr;11(4):M111–011460. PubMed PMID: 22171321; PubMed Central PMCID: PMC3322566. eng.
  • Wu J, Zhu J, Yin H, et al. Analysis of glycan variation on glycoproteins from serum by the reverse lectin-based ELISA assay. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. J Proteome Res. 2014 Apr 4;13(4):2197–2204. PubMed PMID: 24575722; PubMed Central PMCID: PMC3993964. eng.
  • Zhang S, Jiang K, Zhang Q, et al. Serum fucosylated paraoxonase 1 as a potential glycobiomarker for clinical diagnosis of early hepatocellular carcinoma using ELISA index. [Evaluation Studies Research Support, Non-U.S. Gov’t]. Glycoconj J. 2015 May;32(3–4):119–125. PubMed PMID: 25702281; eng.
  • Kumada Y, Ohigashi Y, Emori Y, et al. Improved lectin ELISA for glycosylation analysis of biomarkers using PS-tag-fused single-chain Fv. [Research Support, Non-U.S. Gov’t]. J Immunol Methods. 2012 Nov 30;385(1–2):15–22. PubMed PMID: 22884622; eng.
  • Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics. 2009 Dec 8. DOI:10.4061/2009/239204 PubMed PMID: 20948568; PubMed Central PMCID: PMC2950283. eng.
  • Darebna P, Novak P, Kucera R, et al. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Proteomics. 2017 Feb 5;153:44–52. PubMed PMID: 27646713; PubMed Central PMCID: PMC5803557. eng.
  • Ahn YH, Shin PM, Oh NR, et al. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma. [Evaluation Studies Research Support, Non-U.S. Gov’t].. J Proteomics. 2012 Sep 18;75(17):5507–5515. PubMed PMID: 22789673; eng.
  • Kang X, Sun L, Guo K, et al. Serum protein biomarkers screening in HCC patients with liver cirrhosis by ICAT-LC-MS/MS. [Research Support, Non-U.S. Gov’t]. J Cancer Res Clin Oncol. 2010 Aug; 136(8):1151–1159. PubMed PMID: 20130913; eng.
  • Kim H, Sohn A, Yeo I, et al. Clinical assay for AFP-L3 by using multiple reaction monitoring-mass spectrometry for diagnosing hepatocellular carcinoma. Clin Chem. 2018 Aug;64(8):1230–1238. . PubMed PMID: 29875214; eng.
  • Dela Rosa MA, Chen WC, Chen YJ, et al. One-pot two-nanoprobe assay uncovers targeted glycoprotein biosignature. [Research Support, Non-U.S. Gov’t]. Anal Chem. 2017 Apr 4;89(7):3973–3980. PubMed PMID: 28323416; eng.
  • Kim KH, Lee SY, Hwang H, et al. Direct monitoring of fucosylated glycopeptides of alpha-fetoprotein in human serum for early hepatocellular carcinoma by liquid chromatography-tandem mass spectrometry with immunoprecipitation. [Research Support, Non-U.S. Gov’t]. Proteomics Clin Appl. 2018 Nov;12(6):e1800062. PubMed PMID: 29888876; eng.
  • Hernandez F, Sancho JV, Ibanez M, et al. Current use of high-resolution mass spectrometry in the environmental sciences. [Evaluation Studies Review]. Anal Bioanal Chem. 2012 May;403(5):1251–1264. PubMed PMID: 22362279; eng.
  • Pandya NJ, Klaassen RV, van der Schors RC, et al. Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. [Research Support, Non-U.S. Gov’t]. Proteomics. 2016 Oct;16(20):2698–2705. PubMed PMID: 27392515; PubMed Central PMCID: PMC5129514. eng.
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics . [Comparative Study Evaluation Studies Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Anal Chem. 2004 Jul 15;76(14):4193–4201. PubMed PMID: 15253663; eng.
  • Koopmans F, Ho JTC, Smit AB, et al. Comparative analyses of data independent acquisition mass spectrometric approaches: DIA, WiSIM-DIA, and untargeted DIA. [Comparative Study Research Support, Non-U.S. Gov’t]. Proteomics. 2018 Jan;18(1). DOI:10.1002/pmic.201700304 PubMed PMID: 29134766; PubMed Central PMCID: PMC5817406. eng.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2012 Jun;11(6):O111–016717. PubMed PMID: 22261725; PubMed Central PMCID: PMC3433915. eng.
  • Bruderer R, Bernhardt OM, Gandhi T, et al. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics. 2017 Dec;16(12):2296–2309. PubMed PMID: 29070702; PubMed Central PMCID: PMC5724188. eng.
  • Tsou CC, Avtonomov D, Larsen B, et al. DIA-umpire: comprehensive computational framework for data-independent acquisition proteomics. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nat Methods. 2015 Mar;12(3):258–64, 7 p following 264. PubMed PMID: 25599550; PubMed Central PMCID: PMC4399776. eng.
  • Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015 May;14(5):1400–1410. PubMed PMID: 25724911; PubMed Central PMCID: PMC4424408. eng.
  • Selevsek N, Chang CY, Gillet LC, et al. Reproducible and consistent quantification of the saccharomyces cerevisiae proteome by SWATH-mass spectrometry. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2015 Mar;14(3):739–749. PubMed PMID: 25561506; PubMed Central PMCID: PMC4349991. eng.
  • Fye HK, Wright-Drakesmith C, Kramer HB, et al. Protein profiling in hepatocellular carcinoma by label-free quantitative proteomics in two west African populations. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. PLoS One. 2013;8(7):e68381. PubMed PMID: 23935864; PubMed Central PMCID: PMC3728326. eng.
  • Tsai TH, Song E, Zhu R, et al. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. [Research Support, N.I.H., Extramural]. Proteomics. 2015 Jul;15(13):2369–2381. PubMed PMID: 25778709; PubMed Central PMCID: PMC4490019. eng.
  • Kuhn E, Wu J, Karl J, et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics. 2004 Apr;4(4):1175–1186. PubMed PMID: 15048997; eng.
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006 Apr;5(4):573–588. PubMed PMID: 16332733; eng.
  • Addona TA, Abbatiello SE, Schilling B, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nat Biotechnol. 2009 Jul;27(7):633–641. PubMed PMID: 19561596; PubMed Central PMCID: PMC2855883. eng.
  • Keshishian H, Addona T, Burgess M, et al. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. [Research Support, N.I.H., Extramural]. Mol Cell Proteomics. 2007 Dec;6(12):2212–2229. PubMed PMID: 17939991; PubMed Central PMCID: PMC2435059. eng.
  • Mustafa GM, Larry D, Petersen JR, et al. Targeted proteomics for biomarker discovery and validation of hepatocellular carcinoma in hepatitis C infected patients. [Review]. World J Hepatol. 2015 Jun 8;7(10):1312–1324. PubMed PMID: 26052377; PubMed Central PMCID: PMC4450195. eng.
  • Lange V, Picotti P, Domon B, et al. Selected reaction monitoring for quantitative proteomics: a tutorial. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Syst Biol. 2008;4:222. PubMed PMID: 18854821; PubMed Central PMCID: PMC2583086. eng.
  • Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nat Methods. 2013 Jan;10(1):28–34.
  • Whiteaker JR, Lin C, Kennedy J, et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Validation Studies]. Nat Biotechnol. 2011 Jun 19;29(7):625–634. PubMed PMID: 21685906; PubMed Central PMCID: PMC3232032. eng.
  • Kennedy JJ, Abbatiello SE, Kim K, et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. [Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nat Methods. 2014 Feb;11(2):149–155. PubMed PMID: 24317253; PubMed Central PMCID: PMC3922286. eng.
  • Chambers AG, Percy AJ, Simon R, et al. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. [Research Support, Non-U.S. Gov’t Review]. Expert Rev Proteomics. 2014 Apr;11(2):137–148. PubMed PMID: 24476379; eng.
  • Peterson AC, Russell JD, Bailey DJ, et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Mol Cell Proteomics. 2012 Nov; 11(11) :1475–1488. PubMed PMID: 22865924; PubMed Central PMCID: PMC3494192. eng.
  • Gallien S, Duriez E, Crone C, et al. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2012 Dec;11(12):1709–1723. PubMed PMID: 22962056; PubMed Central PMCID: PMC3518128. eng.
  • Duncan MW, Yergey AL, Patterson SD. Quantifying proteins by mass spectrometry: the selectivity of SRM is only part of the problem. Proteomics. 2009 Mar;9(5):1124–1127. PubMed PMID: 19253279; PubMed Central PMCID: PMC4166569. eng.
  • Kim H, Kim K, Yu SJ, et al. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. [Research Support, Non-U.S. Gov’t]. PLoS One. 2013;8(5):e63468. PubMed PMID: 23717429; PubMed Central PMCID: PMC3661589. eng.
  • Kim H, Kim K, Jin J, et al. Measurement of glycosylated alpha-fetoprotein improves diagnostic power over the native form in hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. PLoS One. 2014;9(10):e110366. PubMed PMID: 25310463; PubMed Central PMCID: PMC4195728. eng.
  • Sohn A, Kim H, Yu SJ, et al. A quantitative analytical method for PIVKA-II using multiple reaction monitoring-mass spectrometry for early diagnosis of hepatocellular carcinoma. Anal Bioanal Chem. 2017 Apr;409(11):2829–2838. PubMed PMID: 28168546; eng.
  • Sohn A, Kim H, Yeo I, et al. Fully validated SRM-MS-based method for absolute quantification of PIVKA-II in human serum: clinical applications for patients with HCC. [Comparative Study Validation Studies]. J Pharm Biomed Anal. 2018 Jul 15;156:142–146. PubMed PMID: 29702392; eng.
  • Lee JY, Kim JY, Park GW, et al. Targeted mass spectrometric approach for biomarker discovery and validation with nonglycosylated tryptic peptides from N-linked glycoproteins in human plasma. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2011 Dec;10(12):M111–009290. PubMed PMID: 21940909; PubMed Central PMCID: PMC3237074. eng.
  • Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. [Review]. Lancet. 2005 Jun 25 – Jul 1;365(9478):2225–2236. PubMed PMID: 15978931; eng.
  • de Serres F, Blanco I. Role of alpha-1 antitrypsin in human health and disease. [Review]. J Intern Med. 2014 Oct;276(4):311–335.
  • Kim H, Park J, Kim Y, et al. Serum fibronectin distinguishes the early stages of hepatocellular carcinoma. Sci Rep. 2017 Aug 25;7(1):9449. PubMed PMID: 28842594; PubMed Central PMCID: PMC5573357. eng.
  • Wang Y, Hao J, Liu X, et al. The mechanism of apoliprotein A1 down-regulated by hepatitis B virus. [Research Support, Non-U.S. Gov’t]. Lipids Health Dis. 2016 Mar 25;15:64. PubMed PMID: 27015844; PubMed Central PMCID: PMC4807537. eng.
  • Mustafa MG, Petersen JR, Ju H, et al. Biomarker discovery for early detection of hepatocellular carcinoma in hepatitis C-infected patients. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2013 Dec;12(12):3640–3652. PubMed PMID: 24008390; PubMed Central PMCID: PMC3861713. eng.
  • Jiang H, Zhang L, Zhang Y, et al. HST-MRM-MS: a novel high-sample-throughput multiple reaction monitoring mass spectrometric method for multiplex absolute quantitation of hepatocellular carcinoma serum biomarker. J Proteome Res. 2018 Oct 31. [ PubMed PMID: 30346787; eng]. DOI:10.1021/acs.jproteome.8b00790
  • Na K, Lee EY, Lee HJ, et al. Human plasma carboxylesterase 1, a novel serologic biomarker candidate for hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. Proteomics. 2009 Aug;9(16):3989–3999. PubMed PMID: 19658107; eng.
  • Zhao Y, Jia W, Sun W, et al. Combination of improved (18)O incorporation and multiple reaction monitoring: a universal strategy for absolute quantitative verification of serum candidate biomarkers of liver cancer. [Research Support, Non-U.S. Gov’t].. J Proteome Res. 2010 Jun 4;9(6):3319–3327. PubMed PMID: 20420461; eng.
  • Drake RR, Schwegler EE, Malik G, et al. Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. [Review]. Mol Cell Proteomics. 2006 Oct;5(10):1957–1967. PubMed PMID: 16760258; eng.
  • Everest-Dass AV, Moh ESX, Ashwood C, et al. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. [Research Support, Non-U.S. Gov’t Review]. Expert Rev Proteomics. 2018 Apr; 15(4) :341–352. PubMed PMID: 29521143; eng.
  • Kellie JF, Tran JC, Lee JE, et al. The emerging process of top down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Mol Biosyst. 2010 Sep;6(9):1532–1539. PubMed PMID: 20711533; PubMed Central PMCID: PMC3115741. eng.
  • Chen R, Tan Y, Wang M, et al. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma. [Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2011 Jul;10(7):M110–006445. PubMed PMID: 21474793; PubMed Central PMCID: PMC3134069. eng.
  • Chen R, Wang F, Tan Y, et al. Development of a combined chemical and enzymatic approach for the mass spectrometric identification and quantification of aberrant N-glycosylation. [Clinical Trial Research Support, Non-U.S. Gov’t].. J Proteomics. 2012 Feb 16;75(5):1666–1674. PubMed PMID: 22202184; eng.
  • Ahn YH, Shin PM, Kim YS, et al. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry. [Research Support, Non-U.S. Gov’t].. Analyst. 2013 Nov 7;138(21):6454–6462. PubMed PMID: 24027776; eng.
  • Tang Z, Varghese RS, Bekesova S, et al. Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. J Proteome Res. 2010 Jan;9(1):104–112. PubMed PMID: 19764807; PubMed Central PMCID: PMC2867345. eng.
  • Kamiyama T, Yokoo H, Furukawa J, et al. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology. 2013 Jun;57(6):2314–2325. PubMed PMID: 23322672; eng.
  • Tsai TH, Wang M, Di Poto C, et al. LC-MS profiling of N-Glycans derived from human serum samples for biomarker discovery in hepatocellular carcinoma. [Comparative Study Research Support, Non-U.S. Gov’t]. J Proteome Res. 2014 Nov 7;13(11):4859–4868. PubMed PMID: 25077556; PubMed Central PMCID: PMC4227556. eng.
  • Zhu J, Lin Z, Wu J, et al. Analysis of serum haptoglobin fucosylation in hepatocellular carcinoma and liver cirrhosis of different etiologies. [Research Support, N.I.H., Extramural]. J Proteome Res. 2014 Jun 6;13(6):2986–2997. PubMed PMID: 24807840; PubMed Central PMCID: PMC4059532. eng.
  • Wang M, Sanda M, Comunale MA, et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. [Research Support, Non-U.S. Gov’t Research Support, N.I.H., Extramural]. Cancer Epidemiol Biomarkers Prev. 2017 May;26(5):795–803. PubMed PMID: 28223431; PubMed Central PMCID: PMC5759760. eng.
  • Yin H, Tan Z, Wu J, et al. Mass-selected site-specific core-fucosylation of serum proteins in hepatocellular carcinoma. [Research Support, N.I.H., Extramural]. J Proteome Res. 2015 Nov 6;14(11):4876–4884. PubMed PMID: 26403951; PubMed Central PMCID: PMC4636958. eng.
  • Hwang H, Lee JY, Lee HK, et al. In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. [Research Support, Non-U.S. Gov’t]. Anal Bioanal Chem. 2014 Dec;406(30):7999–8011. PubMed PMID: 25374123; eng.
  • Yin H, Lin Z, Nie S, et al. Mass-selected site-specific core-fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma. [Research Support, N.I.H., Extramural]. J Proteome Res. 2014 Jun 6;13(6):2887–2896. PubMed PMID: 24799124; PubMed Central PMCID: PMC4059274. eng.
  • Ma J, Sanda M, Wei R, et al. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J Proteomics. 2018 Oct;30(189):67–74. . PubMed PMID: 29427759; PubMed Central PMCID: PMC6350774. eng.
  • Yuan W, Sanda M, Wu J, et al. Quantitative analysis of immunoglobulin subclasses and subclass specific glycosylation by LC-MS-MRM in liver disease. [Clinical Trial Research Support, N.I.H., Extramural]. J Proteomics. 2015 Feb 26;116:24–33. PubMed PMID: 25582524; PubMed Central PMCID: PMC4329072. eng.
  • Tanabe K, Kitagawa K, Kojima N, et al. Multifucosylated alpha-1-acid glycoprotein as a novel marker for hepatocellular carcinoma. J Proteome Res. 2016 Sep 2;15(9):2935–2944. PubMed PMID: 27354006; eng.
  • Sanda M, Zhang L, Edwards NJ, et al. Site-specific analysis of changes in the glycosylation of proteins in liver cirrhosis using data-independent workflow with soft fragmentation. Anal Bioanal Chem. 2017 Jan;409(2):619–627. PubMed PMID: 27822650; PubMed Central PMCID: PMC5370557. eng.
  • Zhu J, Chen Z, Zhang J, et al. Differential quantitative determination of site-specific intact n-glycopeptides in serum haptoglobin between hepatocellular carcinoma and cirrhosis using LC-eThcD-MS/MS. J Proteome Res. 2018 Oct 29. PubMed PMID: 30370771; eng. DOI:10.1021/acs.jproteome.8b00654
  • Kim KH, Park GW, Jeong JE, et al. Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma. Anal Bioanal Chem. 2019 May;411(14):3009–3019.
  • Linden HB, Gross JH. A liquid injection field desorption/ionization-electrospray ionization combination source for a fourier transform ion cyclotron resonance mass spectrometer. J Am Soc Mass Spectrom. 2011 Dec;22(12):2137–2144. PubMed PMID: 22006404; eng.
  • Seger C. Usage and limitations of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clinical routine laboratories. Wien Med Wochenschr. 2012 Nov;162(21–22):499–504. [Review].
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. [Review]. Nature. 2016 Sep 15;537(7620):347–355. PubMed PMID: 27629641; eng.
  • Pan S, Aebersold R, Chen R, et al. Mass spectrometry based targeted protein quantification: methods and applications. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. J Proteome Res. 2009 Feb;8(2):787–797. PubMed PMID: 19105742; PubMed Central PMCID: PMC2657955. eng.
  • Kushnir MM, Rockwood AL, Roberts WL, et al. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Validation Studies]. Clin Chem. 2013 Jun;59(6):982–990. PubMed PMID: 23396140; PubMed Central PMCID: PMC4016991. eng.
  • Anderson NL. The roles of multiple proteomic platforms in a pipeline for new diagnostics. [Review]. Mol Cell Proteomics. 2005 Oct;4(10):1441–1444.
  • Parker CE, Pearson TW, Anderson NL, et al. Mass-spectrometry-based clinical proteomics–a review and prospective. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Analyst. 2010 Aug;135(8):1830–1838. PubMed PMID: 20520858; PubMed Central PMCID: PMC2966304. eng.
  • Jaffe JD, Keshishian H, Chang B, et al. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2008 Oct;7(10):1952–1962. PubMed PMID: 18534968; PubMed Central PMCID: PMC2559937. eng.
  • Anderson NL, Polanski M, Pieper R, et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. [Comparative Study]. Mol Cell Proteomics. 2004 Apr;3(4):311–326. PubMed PMID: 14718574; eng.
  • Shen Y, Kim J, Strittmatter EF, et al. Characterization of the human blood plasma proteome. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Proteomics. 2005 Oct;5(15):4034–4045. PubMed PMID: 16152657; eng.
  • Comunale MA, Wang M, Rodemich-Betesh L, et al. Novel changes in glycosylation of serum Apo-J in patients with hepatocellular carcinoma. [Comparative Study Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Epidemiol Biomarkers Prev. 2011 Jun;20(6):1222–1229. PubMed PMID: 21467232; PubMed Central PMCID: PMC3111882. eng.
  • Goldman R, Ressom HW, Varghese RS, et al. Detection of hepatocellular carcinoma using glycomic analysis. [Comparative Study Research Support, N.I.H., Extramural]. Clin Cancer Res. 2009 Mar 1;15(5):1808–1813. PubMed PMID: 19223512; PubMed Central PMCID: PMC2850198. eng.
  • Dalpathado DS, Desaire H. Glycopeptide analysis by mass spectrometry. [Review]. Analyst. 2008 Jun;133(6):731–738. PubMed PMID: 18493671; eng.
  • Abbatiello SE, Schilling B, Mani DR, et al. Large-scale interlaboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Mol Cell Proteomics. 2015 Sep;14(9):2357–2374. PubMed PMID: 25693799; PubMed Central PMCID: PMC4563721. eng.
  • Lee JY, Lee HK, Park GW, et al. Characterization of site-specific N-glycopeptide isoforms of alpha-1-acid glycoprotein from an interlaboratory study using LC-MS/MS. [Research Support, Non-U.S. Gov’t]. J Proteome Res. 2016 Dec 2;15(12):4146–4164. PubMed PMID: 27760464; eng.
  • van der Merwe DE, Oikonomopoulou K, Marshall J, et al. Mass spectrometry: uncovering the cancer proteome for diagnostics. [Review]. Adv Cancer Res. 2007;96:23–50. PubMed PMID: 17161675; eng.
  • Mueller C, Haymond A, Davis JB, et al. Protein biomarkers for subtyping breast cancer and implications for future research. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Expert Rev Proteomics. 2018 Feb;15(2):131–152. PubMed PMID: 29271260; PubMed Central PMCID: PMC6104835. eng.
  • Zhang B, Whiteaker JR, Hoofnagle AN, et al. Clinical potential of mass spectrometry-based proteogenomics. [Review]. Nat Rev Clin Oncol. 2018 Nov 28. DOI:10.1038/s41571-018-0135-7 PubMed PMID: 30487530; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.