773
Views
11
CrossRef citations to date
0
Altmetric
Review

Proteomic signatures of neuroinflammation in Alzheimer’s disease, multiple sclerosis and ischemic stroke

ORCID Icon, ORCID Icon & ORCID Icon
Pages 601-611 | Received 01 Mar 2019, Accepted 17 Jun 2019, Published online: 08 Jul 2019

References

  • Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–776.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi:10.1016/S1474-4422(15)70016-5
  • Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation—target or tool for therapy? Acta Neuropathol. 2018. doi:10.1007/s00401-018-1930-z
  • Compston A, Coles A. Lancet. Multiple Sclerosis. (London, England). 2008;372:1502–1517. .
  • Eggen BJL, Raj D, Hanisch U-K, et al. Microglial phenotype and adaptation. J Neuroimmune Pharmacol. 2013;8:807–823.
  • Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–1290.e17.
  • Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity. 2017;47:566–581.e9.
  • Babcock AA, Ilkjær L, Clausen BH, et al. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav Immun. 2015;48:86–101.
  • Clausen BH, Lambertsen KL, Dagnæs-Hansen F, et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol. 2016. doi:10.1007/s00401-016-1541-5
  • Grebing M, Nielsen HH, Fenger CD, et al. Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration. Glia. 2016. doi:10.1002/glia.22937
  • Nielsen HH, Ladeby R, Fenger C, et al. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system. J Neuropathol Exp Neurol. 2009. doi:10.1097/NEN.0b013e3181ae0236
  • Gosselin D, Skola D, Coufal NG, et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 2017;356:eaal3222.
  • Prince M, Comas-Herrera A, Knapp M, et al. World Alzheimer report 2016 improving healthcare for people living with dementia. coverage, quality and costs now and in the future. Alzheimer’s Dis Int. 2016: 1–140. https://www.alz.co.uk/research/world-report-2016
  • Braak H, Alafuzoff I, Arzberger T, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006. DOI:10.1007/s00401-006-0127-z
  • Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–467.
  • Mawuenyega KG, Sigurdson W, Ovod V, et al. Decreased clearance of CNS b -Amyloid in Alzheimer ’ s disease. Science. 2010;330: 2010. doi:10.1126/science.1197623
  • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608. doi:10.15252/emmm.201606210
  • Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–127. doi:10.1056/NEJMoa1211851
  • Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–850.
  • Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet. 2016;388:505–517. doi:10.1016/S0140-6736(15)01124-1
  • Goodin DS. The pathogenesis of multiple sclerosis. Clin Exp Neuroimmunol. 2015. doi:10.1111/cen3.12261
  • Kuhlmann T, Ludwin S, Prat A, et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133:13–24. doi:10.1007/s00401-016-1653-y
  • Sawcer S, Hellenthal G, Pirinen M, et al.; International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476: 214–219. doi:10.1038/nature10251
  • Johnson W, Onuma O, Owolabi M, et al. Bulletin of the world health organization stroke: a global response is needed. Bull World Health Organ. 2016;94:634. doi:10.2471/BLT
  • Shibata H, Yoshioka Y, Ohkawa A, et al. Creation and X-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-α antagonist. J Biol Chem. 2008;283:998–1007.
  • Rayasam A, Hsu M, Kijak JA, et al. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology. 2018;154:363–376.
  • Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016. DOI:10.1007/s13311-016-0483-x
  • T. WW, T. H. Multiple sclerosis cerebrospinal fluid. In: Multiple sclerosis, clinical and pathogenetic basis. 1st ed. London: Chapman & Hall Medical; 1997;57–79.
  • Engelhardt B, Carare RO, Bechmann I, et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317–338.
  • Hosp F, Mann M. A primer on concepts and applications of proteomics in neuroscience. Neuron. 2017;96:558–571.
  • Hynd MR, Lewohl JM, Scott HL, et al. Biochemical and molecular studies using human autopsy brain tissue. J Neurochem. 2003;85:543–562. doi:10.1046/j.1471-4159.2003.01747.x
  • Sköld K, Alm H, Scholz B. The impact of biosampling procedures on molecular data interpretation. Mol Cell Proteomics. 2013;12:1489–1501.
  • Anderson NL, Anderson NG. The human plasma proteome. Mol Cell Proteomics. 2002;1:845–867.
  • Geyer PE, Kulak NA, Pichler G, et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2:185–195.
  • Geyer PE, Holdt LM, Teupser D, et al. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017. DOI:10.15252/msb.20156297
  • Choi YS, Choe LH, Lee KH. Recent cerebrospinal fluid biomarker studies of Alzheimer’s disease. Expert Rev Proteomics. 2010;7:919–929.
  • Parandoosh Z, Johanson CE. Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea. Am J Physiol. 1982;243:R400–7.
  • Bastos P, Ferreira R, Manadas B, et al. Insights into the human brain proteome: disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci. 2017;54:185–204.
  • Zhang Y, Guo Z, Zou L, et al. A comprehensive map and functional annotation of the normal human cerebrospinal fluid proteome. J Proteomics. 2015;119:90–99.
  • Guldbrandsen A, Vethe H, Farag Y, et al. In-depth Characterization of the Cerebrospinal Fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR). Mol Cell Proteomics. 2014. doi:10.1074/mcp.M114.038554
  • Wasinger VC, Cordwell SJ, Poljak A, et al. Progress with gene‐product mapping of the mollicutes: mycoplasma genitalium. Electrophoresis. 1995;16:1090–1094.
  • Lovestone S, Güntert A, Hye A, et al. Proteomics of Alzheimer’s disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics. 2007. DOI:10.1586/14789450.4.2.227
  • Aebersold R, Agar JN, Amster IJ, et al. How many human proteoforms are there? Nat Chem Biol. 2018;14:206–214. doi:10.1038/nchembio.2576
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses : the PRISMA statement. PLoS Med. 2009;6. doi:10.1371/journal.pmed.1000097
  • Thygesen C, Ilkjær L, Kempf SJ, et al. Diverse protein profiles in CNS myeloid cells and CNS tissue from lipopolysaccharide- and vehicle-injected APPSWE/PS1ΔE9 transgenic mice implicate cathepsin Z in Alzheimer’s disease. Front Cell Neurosci. 2018;12. doi:10.3389/fncel.2018.00397
  • Sprenger RR, Roepstorff P. Mass spectrometry instrumentation in proteomics, in: ELS. Chichester, UK: John Wiley & Sons, Ltd; 2012.doi:10.1002/9780470015902.a0006194.pub2
  • Lam B, Masellis M, Freedman M, et al. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimer’s Res Ther. 2013. doi:10.1186/alzrt155
  • Disanto G, Berlanga AJ, Handel AE, et al. Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis. 2011;2011:932351.
  • Guo Y, Graber A, McBurney RN, et al. Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms. BMC Bioinformatics. 2010;11.doi:10.1186/1471-2105-11-447
  • Varma VR, Varma S, An Y, et al. Alpha-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol Psychiatry. 2017;22:13–23.
  • Rehman AA, Ahsan H, Khan FH. Alpha-2-macroglobulin: A physiological guardian. J Cell Physiol. 2013;228:1665–1675.
  • Chen H, Li Z, liu N, et al. Influence of alpha-2-macroglobulin 5 bp I/D and Ile1000Val polymorphisms on the susceptibility of Alzheimer’s disease: a systematic review and meta-analysis of 52 studies. Cell Biochem Biophys. 2014. DOI:10.1007/s12013-014-9950-3
  • Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9:62–70.
  • Sheikh MH, Solito E. Annexin A1: uncovering the many talents of an old protein. Int J Mol Sci. 2018;19:1–20.
  • Ries M, Loiola R, Shah UN, et al. The anti-inflammatory Annexin A1 induces the clearance and degradation of the amyloid-β peptide. J Neuroinflammation. 2016;13:234.
  • McArthur S, Cristante E, Paterno M, et al. Annexin A1: A central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 2010;185:6317–6328.
  • Park JC, Baik SH, Han SH, et al. Annexin A1 restores Aβ1-42-induced blood–brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell. 2017;16:149–161.
  • Sohma H, Ichi Imai S, Takei N, et al. Evaluation of annexin A5 as a biomarker for Alzheimer’s disease and dementia with lewy bodies, Front. Aging Neurosci. 2013;5:1–7.
  • Wirenfeldt M, Dissing-Olesen L, Anne Babcock A, et al. Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol. 2007;171:617–631.
  • Eikelenboom P, Stam FC. An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;47:17–25.
  • Afagh A, Cummings BJ, Cribbs DH, et al. Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol. 1996. DOI:10.1006/exnr.1996.0043
  • Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017. DOI:10.1016/j.bbi.2016.03.010
  • Claire H, Brian CJ, Monica M, et al. Update of the human and mouse SERPIN gene superfamily. Hum Genomics. 2013;7:1–14.
  • Gollin PA, Kalaria RN, Eikelenboom P, et al. αlpha-1 Antitrypsin and αlpha 1-antichymotrypsin are in the lesions of Alzheimer’s disease. Neuroreport. 1992;3:201–203.
  • Gold M, Dolga AM, Koepke J, et al. Α1-antitrypsin modulates microglial-mediated neuroinflammation and protects microglial cells from amyloid-Β-induced toxicity. J Neuroinflammation. 2014;11:1–11.
  • Yao W, Yin T, Tambini MD, et al. The Familial dementia gene ITM2b/BRI2 facilitates glutamate transmission via both presynaptic and postsynaptic mechanisms. Sci Rep. 2019;9:1–9.
  • Matsuda S, Tamayev R, D’Adamio L. Increased AβPP processing in familial danish dementia patients. J Alzheimer’s Dis. 2011;27:385–391.
  • Svatoňová J, Bořecká K, Adam P, et al. Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: A follow-up study. Dis Markers. 2014;2014. DOI:10.1155/2014/495402
  • Ingram G, Loveless S, Howell OW, et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun. 2014. doi:10.1186/2051-5960-2-53
  • Watkins LM, Neal JW, Loveless S, et al. Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation. 2016. doi:10.1186/s12974-016-0611-x
  • Liu Y, Given KS, Harlow DE, et al. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol Commun. 2017;5:25.
  • Boesen MS, Jensen PEH, Magyari M, et al. Increased cerebrospinal fluid chitinase 3-like 1 and neurofilament light chain in pediatric acquired demyelinating syndromes. Mult Scler Relat Disord. 2018;24:175–183.
  • Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011 Mar 17. 2013;73, 479–501:1–28. doi:10.1146/annurev-physiol-012110-142250.Role
  • Quintana E, Coll C, Salavedra-Pont J, et al. Cognitive impairment in early stages of multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain. Eur J Neurol. 2018;25:1189–1191.
  • Reed GL, Houng AK, Singh S, et al. α2-antiplasmin: new insights and opportunities for ischemic stroke. Semin Thromb Hemost. 2017;43:191–199.
  • Del Giudice M, Gangestad SW. Rethinking IL-6 and CRP: why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018;70:61–75.
  • Dziedzic T. Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev Neurother. 2015;15:523–531.
  • Grønhøj MH, Clausen BH, Fenger CD, et al. Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun. 2017;65:296–311.
  • Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017;17:49–59. doi:10.1038/nri.2016.123
  • Waismann C. The role of IL-17 in CNS diseases. Acta Neuropathol. 2015;129:625–637.
  • Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22:147–184.
  • Durrant DM, Williams JL, Daniels BP, et al. Chemokines referee inflammation within the central nervous system during infection and disease. Adv Med. 2014;2014:1–10.
  • Cheng W, Chen G. Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm. 2014;2014:1–8. doi:10.1155/2014/659206
  • Nilsson T, Mann M, Aebersold R, et al. Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods. 2010;7:681–685.
  • Thygesen C, Boll I, Finsen B, et al. Characterizing disease-associated changes in post-translational modifications by mass spectrometry. Expert Rev Proteomics. 2018;15:245–258.
  • Anderson NL, Anderson NG, Haines LR, et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res. 2004. DOI:10.1021/pr034086h
  • Vizcaíno JA, Csordas A, Del-Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–D456.
  • Specht H, Slavov N. Transformative opportunities for single-cell proteomics. J Proteome Res. 2018;17:2565–2571. doi:10.1021/acs.jproteome.8b00257
  • Virant-Klun I, Leicht S, Hughes C, et al. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol Cell Proteomics. 2016;15:2616–2627.
  • Budnik B, Levy E, Harmange G, et al. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 2018;19:161.
  • Abud EM, Ramirez RN, Martinez ES, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–293.e9. doi:10.1016/j.neuron.2017.03.042
  • Franklin RJM, Ffrench-Constant C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat Rev Neurosci. 2017;18:753–769. doi:10.1038/nrn.2017.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.