1,258
Views
52
CrossRef citations to date
0
Altmetric
Review

Glycosylation and its implications in breast cancer

ORCID Icon &
Pages 665-680 | Received 13 May 2019, Accepted 15 Jul 2019, Published online: 25 Jul 2019

References

  • Aub JC, Tieslau C, Lankester A. Reactions of normal and tumor cell surfaces to enzymes. i. wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci U S A. 1963 Oct;50:613–619. PubMed PMID: 14077487; PubMed Central PMCID: PMCPMC221235. eng.
  • Barton JG, Bois JP, Sarr MG, et al. Predictive and prognostic value of CA 19-9 in resected pancreatic adenocarcinoma. J Gastrointest Surg. 2009 Nov;13(11):2050–2058. PubMed PMID: 19756875; eng.
  • Drake RR. Glycosylation and cancer: moving glycomics to the forefront. Adv Cancer Res. 2015;126:1–10.
  • Kirwan A, Utratna M, O’Dwyer ME, et al. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int. 2015 Oct 05;2015: 490531. 04/02/received 05/28/revised 05/31/accepted. PubMed PMID: PMC4609776.
  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005 Nov;5(11):845–856. PubMed PMID: 16239904; eng.
  • Sawyers CL. The cancer biomarker problem. Nature. 2008 Apr 02;452:548. online.
  • Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomark Med. 2015 Sep 02;9(9):835–844. PubMed PMID: PMC4889013.
  • Grishman E. Histochemical analysis of mucopolysaccharides occurring in mucus-producing tumors; mixed tumors of the parotid gland, colloid carcinomas of the breast, and myxomas. Cancer. 1952 Jul;5(4):700–707. PubMed PMID: 14935980; eng.
  • Remmele W, Hildebrand U, Hienz HA, et al. Comparative histological, histochemical, immunohistochemical and biochemical studies on oestrogen receptors, lectin receptors, and Barr bodies in human breast cancer. Virchows Arch A Pathol Anat Histopathol. 1986;409(2):127–147. PubMed PMID: 2424168; eng.
  • Parodi AJ, Blank EW, Peterson JA, et al. Dolichol-bound oligosaccharides and the transfer of distal monosaccharides in the synthesis of glycoproteins by normal and tumor mammary epithelial cells. Breast Cancer Res Treat. 1982;2(3):227–237. PubMed PMID: 6817834; eng.
  • Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7–13;314(6006):53–57. PubMed PMID: 2579340; eng.
  • Desai PR. Immunoreactive T and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immunotherapy. Transfus Med Rev. 2000 Oct;14(4):312–325. PubMed PMID: 11055076; eng.
  • Foster CS, Neville AM. Expression of breast epithelial differentiation antigens in human primary breast cancer. J Natl Cancer Inst. 1987 Oct;79(4):613–622. PubMed PMID: 2443736; eng.
  • Kirmiz C, Li B, An HJ, et al. A serum glycomics approach to breast cancer biomarkers. Mol Cell Proteomics. 2007 Jan 1;6(1):43–55.
  • Wolf MF, Ludwig A, Fritz P, et al. Increased expression of Thomsen-Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol. 1988;9(4):190–194. PubMed PMID: 3420374; eng.
  • Burchell J, Durbin H, Taylor-Papadimitriou J. Complexity of expression of antigenic determinants, recognized by monoclonal antibodies HMFG-1 and HMFG-2, in normal and malignant human mammary epithelial cells. J Immunol. 1983 Jul;131(1):508–513. PubMed PMID: 6190927; eng.
  • Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med (Berl). 1997 Aug;75(8):594–602. PubMed PMID: 9297627; eng.
  • Duffy MJ, Evoy D, McDermott EW. CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta. 2010 Dec 14;411(23–24):1869–1874. PubMed PMID: 20816948; eng.
  • Lin S, Kemmner W, Grigull S, et al. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells. Exp Cell Res. 2002 May 15;276(1):101–110. PubMed PMID: 11978012; eng.
  • Abd Hamid UM, Royle L, Saldova R, et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology. 2008;18(12):1105–1118.
  • Scott DA, Casadonte R, Cardinali B, et al. Increases in tumor N-glycan polylactosamines associated with advanced HER2 positive and triple negative breast cancer tissues. Proteomics Clin Appl. 2018 Dec 28;e1800014. PubMed PMID: 30592377; eng. DOI:10.1002/prca.201800014
  • Scott DA, Norris-Caneda K, Spruill L, et al. Specific N-linked glycosylation patterns in areas of necrosis in tumor tissues. Int J Mass Spectrom. 2018;437:69–76.
  • Howlader NNA, Krapcho M, Miller D, et al. (eds). SEER cancer statistics review, 1975–2014. In: Institute NC, editor. SEER website 2016.
  • Ibrahim E, Al-Gahmi AM, Zeenelin AA, et al. Basal vs. luminal A breast cancer subtypes: a matched case-control study using estrogen receptor, progesterone receptor, and HER-2 as surrogate markers. Med Oncol. 2009;26(3):372–378. PubMed PMID: 19034706; eng.
  • Cancer stat facts: female breast cancer. In: Surveillance EaERP, editor. Online: National Cancer Institute; 2019.
  • The Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumors. Nature. 2012 Sep 23;490(7418):61–70. PubMed PMID: PMC3465532.
  • Peiris D, Spector AF, Lomax-Browne H, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors [Article]. Sci Rep. 2017 Feb 22;7:43006. online. https://www.nature.com/articles/srep43006#supplementary-information
  • Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010 Nov 11;363(20):1938–1948. PubMed PMID: 21067385; eng.
  • Yu T, Di G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res. 2017;29(3):237–252. 01/20/received 04/12/accepted. PubMed PMID: PMC5497211.
  • Liao HY, Zhang WW, Sun JY, et al. The clinicopathological features and survival outcomes of different histological subtypes in triple-negative breast cancer. J Cancer. 2018;9(2):296–303. PubMed PMID: 29344276; PubMed Central PMCID: PMCPMC5771337. eng.
  • Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26. DOI:10.1038/sj.onc.1210379
  • Burris HA, Hurwitz HI, Dees EC, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23. DOI:10.1200/jco.2005.16.584
  • Lauc G, Pezer M, Rudan I, et al. Mechanisms of disease: the human N-glycome. Biochim Biophys Acta. 2016 Aug;1860(8):1574–1582. PubMed PMID: 26500099; eng.
  • Eccles SA, Aboagye EO, Ali S, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. BCR. 2013;15(5):R92–R92. PubMed PMID: 24286369.
  • Fallahpour S, Navaneelan T, De P, et al. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open. 2017 Jul-Sep 09/25;5(3):E734–E739. PubMed PMID: PMC5621954.
  • Noone AMHN, Krapcho M, Miller D, et al. (eds). SEER cancer statistics review (National Cancer Institute). based on November 2017 SEER data submission, posted to SEER website April 2018. 2017.
  • Network NCC.. NCCN clinical practice guidelines in oncology. NCCN; 2018 March 20.
  • Polyak K. Breast cancer: origins and evolution. J Clin Invest. 2007 Nov 01;117(11):3155–3163.
  • Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast. 2016 Aug 01;28:136–144.
  • Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013;2013:747318. PubMed PMID: 23586058.
  • Simpson PT, Reis‐Filho JS, Gale T, et al. Molecular evolution of breast cancer. J Pathol. 2005;205(2):248–254.
  • Varki A. Biological roles of glycans. Glycobiology. 2017 Jan;27(1):3–49. PubMed PMID: 27558841; PubMed Central PMCID: PMCPMC5884436. eng.
  • Dennis JW, Lau KS, Demetriou M, et al. Adaptive regulation at the cell surface by n-glycosylation. Traffic. 2009;10(11):1569–1578.
  • Ohtsubo K, Takamatsu S, Minowa MT, et al. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell. 2005 Dec 29;123(7):1307–1321.
  • Partridge EA, Le Roy C, Di Guglielmo GM, et al. Regulation of cytokine receptors by Golgi N-Glycan processing and endocytosis. Science. 2004;306(5693):120–124.
  • Schachter H. The search for glycan function: fucosylation of the TGF-β1 receptor is required for receptor activation. Proc Natl Acad Sci U S A. 2005;102(44):15721–15722.
  • Liu YC, Yen HY, Chen CY, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11332–11337. PubMed PMID: 21709263; PubMed Central PMCID: PMCPMC3136320. eng.
  • Lo WY, Lagrange AH, Hernandez CC, et al. Glycosylation of {beta}2 subunits regulates GABAA receptor biogenesis and channel gating. J Biol Chem. 2010 Oct 8;285(41):31348–31361. PubMed PMID: 20639197; PubMed Central PMCID: PMCPMC2951209. eng.
  • Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget. 2016 Mar 17;7(23):35478–35489. 01/28/received 03/02/accepted. PubMed PMID: PMC5085245.
  • Kuzmanov U, Kosanam H, Diamandis EP. The sweet and sour of serological glycoprotein tumor biomarker quantification. BMC Med. 2013 Feb 07;11:31. PubMed PMID: 23390961; PubMed Central PMCID: PMCPMC3751898. eng.
  • Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002 Apr;12(4):43r–56r. PubMed PMID: 12042244; eng.
  • Potapenko IO, Haakensen VD, Luders T, et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol. 2010 Apr;4(2):98–118. PubMed PMID: 20060370; eng.
  • Varki A, Cummings RD, Esko JD, et al., editors. Essentials of glycobiology. 3 ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2017.
  • Abbott KL, Aoki K, Lim J-M, et al. Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J Proteome Res. 2008 Apr 01;7(4):1470–1480.
  • Ladenson RP, Schwartz SO, Ivy AC. Incidence of the blood groups and the secretor factor in patients with pernicious anemia and stomach carcinoma. Am J Med Sci. 1949 Feb;217(2):194–197. PubMed PMID: 18109280; eng.
  • Taniguchi N, Kizuka Y. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res. 2015;126:11–51. PubMed PMID: 25727145; eng.
  • Blanas A, Sahasrabudhe NM, Rodríguez E, et al. Fucosylated antigens in cancer: an alliance toward tumor progression, metastasis, and resistance to chemotherapy. Front Oncol. 2018 Feb 23;8:39. 11/29/received 02/05/accepted. PubMed PMID: PMC5829055.
  • Burchell JM, Beatson R, Graham R, et al. O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans. 2018;46:779–788.
  • Cui H, Lin Y, Yue L, et al. Differential expression of the alpha2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol Rep. 2011 May;25(5):1365–1371. PubMed PMID: 21344161; eng.
  • Josic D, Martinovic T, Pavelic K. Glycosylation and metastases. Electrophoresis. 2018 Sep 24. PubMed PMID: 30246896; eng. DOI:10.1002/elps.201800238
  • Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J. 1997 Aug;14(5):569–576. PubMed PMID: 9298689; eng.
  • Liu X, Nie H, Zhang Y, et al. Cell surface-specific N-glycan profiling in breast cancer. PloS One. 2013;8(8):e72704. PubMed PMID: 24009699; PubMed Central PMCID: PMCPMC3751845. eng.
  • Ray MRJ, David M. Hallmarks of metastasis. Lung Cancer Metastasis. 2009;29–46.
  • Rodrigues JG, Balmaña M, Macedo JA, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cell Immunol. 2018;333:46–57.
  • Hakomori S, Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst. 1983 Aug;71(2):231–251. PubMed PMID: 6576183; eng.
  • Kannagi R, Yin J, Miyazaki K, et al. Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants–hakomori’s concepts revisited. Biochim Biophys Acta. 2008 Mar;1780(3):525–531. PubMed PMID: 17980710; eng.
  • Drake RR, West CA, Mehta AS, et al. MALDI mass spectrometry imaging of N-linked glycans in tissues. Adv Exp Med Biol. 2018;59–76.
  • Buckhaults P, Chen L, Fregien N, et al. Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J Biol Chem. 1997 Aug 1;272(31):19575–19581. PubMed PMID: 9235963; eng.
  • Hatano K, Miyamoto Y, Nonomura N, et al. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-kappaB-dependent transcriptional control of alpha2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int J Cancer. 2011 Oct 15;129(8):1838–1847. PubMed PMID: 21165949; eng.
  • Kumamoto K, Goto Y, Sekikawa K, et al. Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res. 2001 Jun 1;61(11):4620–4627. PubMed PMID: 11389099; eng.
  • Pinho SS, Oliveira P, Cabral J, et al. Loss and recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation is a mechanism involved in epithelial-mesenchymal-epithelial transitions. PloS One. 2012;7(3):e33191. PubMed PMID: 22427986; PubMed Central PMCID: PMCPMC3302839. eng.
  • Arnold JN, Saldova R, Hamid UM, et al. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics. 2008 Aug;8(16):3284–3293. PubMed PMID: 18646009; eng.
  • Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10231–10233. PubMed PMID: 12149519; PubMed Central PMCID: PMCPMC124893. eng.
  • Drake RR, Jones EE, Powers TW, et al. Altered glycosylation in prostate cancer. Adv Cancer Res. 2015;126:345–382. PubMed PMID: 25727153; eng.
  • Kölbl AC, Andergassen U, Jeschke U. The role of glycosylation in breast cancer metastasis and cancer control. Front Oncol. 2015 Oct 13;5:219. 08/26/received 09/24/accepted. PubMed PMID: PMC4602128.
  • Taparra K, Tran PT, Zachara NE. Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front Oncol. 2016 Apr 18;6:85. 02/22/received 03/27/accepted. PubMed PMID: PMC4834358.
  • Lau KS, Partridge EA, Grigorian A, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 2007 Apr 6;129(1):123–134. PubMed PMID: 17418791; eng.
  • Kudelka MR, Ju T, Heimburg-Molinaro J, et al. Simple sugars to complex disease–mucin-type O-glycans in cancer. Adv Cancer Res. 2015;126:53–135. PubMed PMID: 25727146; PubMed Central PMCID: PMCPMC5812724. eng.
  • David L, Nesland JM, Clausen H, et al. Simple mucin-type carbohydrate antigens (Tn, sialosyl-Tn and T) in gastric mucosa, carcinomas and metastases. APMIS Suppl. 1992;27:162–172. PubMed PMID: 1520525; eng.
  • Drake RR, Powers TW, Jones EE, et al. MALDI Mass spectrometry imaging of N-linked glycans in cancer tissues. Adv Cancer Res. 2017;134:85–116. PubMed PMID: 28110657; PubMed Central PMCID: PMCPMC6020705. eng.
  • Gill DJ, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol. 2010 May 31;189(5):843–858. PubMed PMID: 20498016; PubMed Central PMCID: PMCPMC2878949. eng.
  • Berois N, Gattolliat CH, Barrios E, et al. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem. 2013 Jan;59(1):225–233. PubMed PMID: 23136245; eng.
  • Itzkowitz S, Kjeldsen T, Friera A, et al. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology. 1991 Jun;100(6):1691–1700. PubMed PMID: 1850375; eng.
  • Powers TW, Holst S, Wuhrer M, et al. Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry [Article]. Biomolecules. 2015;5(4):2554–2572.
  • Radhakrishnan P, Dabelsteen S, Madsen FB, et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):E4066–E4075. PubMed PMID: 25118277; PubMed Central PMCID: PMCPMC4191756. eng.
  • Reis CA, David L, Seixas M, et al. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int J Cancer. 1998 Aug 21;79(4):402–410. PubMed PMID: 9699534; eng.
  • Ricardo S, Marcos-Silva L, Pereira D, et al. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol Oncol. 2015 Feb;9(2):503–512. PubMed PMID: 25454345; PubMed Central PMCID: PMCPMC5528651. eng.
  • Sewell R, Backstrom M, Dalziel M, et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem. 2006 Feb 10;281(6):3586–3594. PubMed PMID: 16319059; eng.
  • Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function [journal article]. Histochem Cell Biol. 2017 February 01;147(2):149–174.
  • Ciborowski P, Finn OJ. Non-glycosylated tandem repeats of MUC1 facilitate attachment of breast tumor cells to normal human lung tissue and immobilized extracellular matrix proteins (ECM) in vitro: potential role in metastasis. Clin Exp Metastasis. 2002;19(4):339–345. PubMed PMID: 12090474; eng.
  • Goldstein LJ, Gray R, Badve S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol. 2008 Sep 1;26(25):4063–4071. PubMed PMID: 18678838; PubMed Central PMCID: PMCPMC2654377. eng.
  • Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications [Review]. Nat Rev Cancer. 2015 Sep;15(9):540–555. print.
  • Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–260. PubMed PMID: 9597130; eng.
  • Au GH, Mejias L, Swami VK, et al. Quantitative assessment of Tn antigen in breast tissue micro-arrays using CdSe aqueous quantum dots. Biomaterials. 2014 Mar;35(9):2971–2980. PubMed PMID: 24411673; eng.
  • Girling A, Bartkova J, Burchell J, et al. A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int J Cancer. 1989 Jun 15;43(6):1072–1076. PubMed PMID: 2471698; eng.
  • Burchell J, Poulsom R, Hanby A, et al. An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology. 1999 Dec;9(12):1307–1311. PubMed PMID: 10561455; eng.
  • Lloyd KO, Burchell J, Kudryashov V, et al. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem. 1996 Dec 27;271(52):33325–33334. PubMed PMID: 8969192; eng.
  • Muller S, Alving K, Peter-Katalinic J, et al. High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem. 1999 Jun 25;274(26):18165–18172. PubMed PMID: 10373415; eng.
  • Julien S, Ivetic A, Grigoriadis A, et al. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 2011 Dec 15;71(24):7683–7693. PubMed PMID: 22025563; eng.
  • Beatson R, Maurstad G, Picco G, et al. The Breast Cancer-Associated Glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-Type Lectin MGL. PloS One. 2015;10(5):e0125994. PubMed PMID: 25951175; PubMed Central PMCID: PMCPMC4423978. eng.
  • Gill DJ, Tham KM, Chia J, et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3152–E3161. PubMed PMID: 23912186; PubMed Central PMCID: PMCPMC3752262. eng.
  • Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008 Nov;8(11):874–887. PubMed PMID: 18846099; PubMed Central PMCID: PMCPMC2768770. eng.
  • Cazet A, Julien S, Bobowski M, et al. Tumour-associated carbohydrate antigens in breast cancer. BCR. 2010;12(3):204. PubMed PMID: 20550729.
  • Dall’Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J. 2001 Nov-Dec;18(11–12):841–850. PubMed PMID: 12820717; eng.
  • Harduin-Lepers A, Krzewinski-Recchi MA, Colomb F, et al. Sialyltransferases functions in cancers. Front Biosci (Elite Ed). 2012 Jan 1;4:499–515. PubMed PMID: 22201891; eng.
  • Baldus SE, Zirbes TK, Monig SP, et al. Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: sialosyl-Lewis(a), Sialosyl-Lewis(x) and sialosyl-Tn. Tumour Biol. 1998;19(6):445–453. PubMed PMID: 9817972; eng.
  • Amado M, Carneiro F, Seixas M, et al. Dimeric sialyl-Le(x) expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology. 1998 Mar;114(3):462–470. PubMed PMID: 9496936; eng.
  • Rosen SD, Bertozzi CR. The selectins and their ligands. Curr Opin Cell Biol. 1994 Oct;6(5):663–673. PubMed PMID: 7530461; eng.
  • Haxho F, Neufeld RJ, Szewczuk MR. Neuraminidase-1: a novel therapeutic target in multistage tumorigenesis. Oncotarget. 2016;7(26):40860–40881. PubMed PMID: 27029067; eng.
  • Haxho F, Allison S, Alghamdi F, et al. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer (Dove Med Press). 2014;6:191–203. PubMed PMID: 25525387; PubMed Central PMCID: PMCPMC4266271. eng.
  • Beatson R, Tajadura-Ortega V, Achkova D, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016 Nov;17(11):1273–1281. PubMed PMID: 27595232; PubMed Central PMCID: PMCPMC5257269. eng.
  • Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol. 2014 Jan;10(1):69–75. PubMed PMID: 24292068; PubMed Central PMCID: PMCPMC3893890. eng.
  • Jandus C, Boligan KF, Chijioke O, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014 Apr;124(4):1810–1820. PubMed PMID: 24569453; PubMed Central PMCID: PMCPMC3973073. eng.
  • Laubli H, Pearce OM, Schwarz F, et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14211–14216. PubMed PMID: 25225409; PubMed Central PMCID: PMCPMC4191788. eng.
  • Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014 Oct;14(10):653–666. PubMed PMID: 25234143; PubMed Central PMCID: PMCPMC4191907. eng.
  • Xiao H, Woods EC, Vukojicic P, et al. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10304–10309. PubMed PMID: 27551071; PubMed Central PMCID: PMCPMC5027407. eng.
  • Ma X, Dong W, Su Z, et al. Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4 [Original Article]. Cell Death Dis. 2016 Dec 29;7:e2561. online. https://www.nature.com/articles/cddis2016427#supplementary-information
  • Tian Y, Esteva FJ, Song J, et al. Altered expression of sialylated glycoproteins in breast cancer using hydrazide chemistry and mass spectrometry. Mol Cell Proteomics. 2012;11:M111.011403.
  • Brockhausen I. Mucin‐type O‐glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 2006;7(6):599–604.
  • Brockhausen I, Yang J-M, Burchell J, et al. Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem. 1995;233(2):607–617.
  • Picco G, Julien S, Brockhausen I, et al. Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology. 2010;20(10):1241–1250.
  • Videira PA, Correia M, Malagolini N, et al. ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer. 2009 Oct 07;9(1):357.
  • Ren D, Jia L, Li Y, et al. ST6GalNAcII mediates the invasive properties of breast carcinoma through PI3K/Akt/NF-kappaB signaling pathway. IUBMB Life. 2014 Apr;66(4):300–308. PubMed PMID: 24756995; eng.
  • Nguyen K, Yan Y, Yuan B, et al. ST8SIA1 regulates tumor growth and metastasis in TNBC by activating the FAK-AKT-mTOR signaling pathway. Mol Cancer Ther. 2018 Dec;17(12):2689–2701. PubMed PMID: 30237308; PubMed Central PMCID: PMCPMC6279518. eng.
  • Orsi G, Barbolini M, Ficarra G, et al. GD2 expression in breast cancer. Oncotarget. 2017 May 9;8(19):31592–31600. PubMed PMID: 28415563; PubMed Central PMCID: PMCPMC5458232. eng.
  • Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology. 2003;13(7):41R–53R.
  • Rosato FE, Seltzer M, Mullen J, et al. Serum fucose in the diagnosis of breast cancer. Cancer. 1971;28(6):1575–1579.
  • Takahashi M, Kuroki Y, Ohtsubo K, et al. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr Res. 2009 Aug 17;344(12):1387–1390.
  • Wang X, Gu J, Ihara H, et al. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem. 2006 Feb 3;281(5):2572–2577. PubMed PMID: 16316986; eng.
  • Carrascal MA, Silva M, Ramalho JS, et al. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol Oncol. 2018 May;12(5):579–593. PubMed PMID: 29215790; PubMed Central PMCID: PMCPMC5928367. eng.
  • Tu C-F, Wu M-Y, Lin Y-C, et al. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. BCR. 2017;19(1):111. PubMed PMID: 28982386; eng.
  • Koh YW, Lee HJ, Ahn JH, et al. Expression of Lewis X is associated with poor prognosis in triple-negative breast cancer. Am J Clin Pathol. 2013 Jun;139(6):746–753. PubMed PMID: 23690116; eng.
  • Brooks SA, Leathem AJ. Expression of the CD15 antigen (Lewis x) in breast cancer. Histochem J. 1995 Sep;27(9):689–693. PubMed PMID: 8557532; eng.
  • Yue L, Han C, Li Z, et al. Fucosyltransferase 8 expression in breast cancer patients: A high throughput tissue microarray analysis. Histol Histopathol. 2016 May;31(5):547–555. PubMed PMID: 26596733; eng.
  • Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer [journal article]. Anal Bioanal Chem. 2017 Jan 01;409(2):395–410.
  • Chang MC, Souter LH, Kamel-Reid S, et al. Clinical utility of multigene profiling assays in early-stage breast cancer. Curr Oncol. 2017 Oct;24(5):e403–e422. PubMed PMID: 29089811; PubMed Central PMCID: PMCPMC5659165. eng.
  • Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. BCR. 2006;8(3):R25. PubMed PMID: 16737553; PubMed Central PMCID: PMCPMC1557737. eng.
  • Penault-Llorca FM, Filleron T, Asselain B, et al. Prediction of recurrence with the Oncotype DX recurrence score in node-positive, HR-positive, breast cancer patients treated with adjuvant chemotherapy: results from PACS01 trial. J Clin Oncol. 2014 May 20;32(15_suppl):11052.
  • Xin L, Liu Y-H, Martin TA, et al. The era of multigene panels comes? The clinical utility of oncotype DX and MammaPrint. World J Oncol. 2017 May 04;8(2):34–40. 03/29/accepted. PubMed PMID: PMC5649994.
  • Apuri S. Neoadjuvant and adjuvant therapies for breast cancer. South Med J. 2017 Oct;110(10):638–642. PubMed PMID: 28973704; eng.
  • Sokolenko AP, Imyanitov EN. Molecular diagnostics in clinical oncology. Front Mol Biosci. 2018;5:76. PubMed PMID: 30211169; PubMed Central PMCID: PMCPMC6119963. eng.
  • de Leoz MLA, Young LJT, An HJ, et al. High-Mannose glycans are elevated during breast cancer progression. Mol Cell Proteomics. 2011 Nov 19;10(1):M110.002717. 07/06/received 11/15/revised. PubMed PMID: PMC3013453.
  • Pierce A, Saldova R, Abd Hamid UM, et al. Levels of specific glycans significantly distinguish lymph node-positive from lymph node-negative breast cancer patients. Glycobiology. 2010;20(10):1283–1288.
  • Jia Y, Chen Y, Wang Q, et al. Exosome: emerging biomarker in breast cancer. Oncotarget. 2017 Jun 20;8(25):41717–41733. PubMed PMID: 28402944; PubMed Central PMCID: PMCPMC5522217. eng.
  • Ruhaak LR, Xu G, Li Q, et al. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018 Sep 12;118(17):7886–7930. PubMed PMID: 29553244; eng.
  • Hill JJ, Tremblay TL, Fauteux F, et al. Glycoproteomic comparison of clinical triple-negative and luminal breast tumors. J Proteome Res. 2015 Mar 6;14(3):1376–1388. PubMed PMID: 25658377; eng.
  • Zhang H, Li XJ, Martin DB, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003 Jun;21(6):660–666. PubMed PMID: 12754519; eng.
  • Powers TW, Neely BA, Shao Y, et al. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PloS One. 2014;9(9):e106255. PubMed PMID: 25184632; PubMed Central PMCID: PMCPMC4153616. eng.
  • Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227. PubMed PMID: 29276709; eng.
  • Wang J, Ma Z, Carr SA, et al. Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol Cell Proteomics. 2017 Jan;16(1):121–134. PubMed PMID: 27836980; PubMed Central PMCID: PMCPMC5217778. eng.
  • Johansson HJ, Socciarelli F, Vacanti NM, et al. Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun. 2019 Apr 08;10(1):1600.
  • Matsunuma R, Chan DW, Kim B-J, et al. DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Nat Acad Sci. 2018;115(51):E11978–E11987.
  • Griffith OL, Spies NC, Anurag M, et al. The prognostic effects of somatic mutations in ER-positive breast cancer. Nat Commun. 2018 Sep 04;9(1):3476.
  • Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016 Jun 2;534(7605):55–62. PubMed PMID: 27251275; PubMed Central PMCID: PMCPMC5102256. eng.
  • Mardamshina M, Geiger T. Next-generation proteomics and its application to clinical breast cancer research. Am J Pathol. 2017;187(10):2175–2184.
  • Banazadeh A, Veillon L, Wooding KM, et al. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017 Jan;38(1):162–189. PubMed PMID: 27757981; PubMed Central PMCID: PMCPMC5221507. eng.
  • Hu H, Khatri K, Klein J, et al. A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J. 2016 Jun;33(3):285–296. PubMed PMID: 26612686; PubMed Central PMCID: PMCPMC4882288. eng.
  • Ruhaak LR, Xu G, Li Q, et al. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018;118:7886–7930.
  • Sanda M, Zhang L, Edwards NJ, et al. Site-specific analysis of changes in the glycosylation of proteins in liver cirrhosis using data-independent workflow with soft fragmentation. Anal Bioanal Chem. 2017 Jan;409(2):619–627. PubMed PMID: 27822650; PubMed Central PMCID: PMCPMC5370557. eng.
  • Thaysen-Andersen M, Packer NH. Advances in LC–MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta Proteins Proteom. 2014 Sep 01;1844(9):1437–1452.
  • Klein J, Carvalho L, Zaia J. Application of network smoothing to glycan LC-MS profiling. Bioinformatics. 2018 Oct 15;34(20):3511–3518. PubMed PMID: 29790907; eng.
  • Vos DRN, Jansen I, Lucas M, et al. Strategies for managing multi-patient 3D mass spectrometry imaging data. J Proteomics. 2019 Feb 20;193:184–191. PubMed PMID: 30343012; eng.
  • Liang Y, Wang F, Zhang P, et al. Development of a framework for large scale three-dimensional pathology and biomarker imaging and spatial analytics. AMIA Jt Summits Transl Sci Proc. 2017;2017:75–84. PubMed PMID: 28815110; eng.
  • Gray CJ, Thomas B, Upton R, et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta. 2016 Aug;1860(8):1688–1709. PubMed PMID: 26854953; eng.
  • Fenn LS, McLean JA. Structural separations by ion mobility-MS for glycomics and glycoproteomics. Methods Mol Biol. 2013;951:171–194. PubMed PMID: 23296531; PubMed Central PMCID: PMCPMC5102027. eng.
  • Skraskova K, Claude E, Jones EA, et al. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods. 2016 Jul 15;104:69–78. PubMed PMID: 26922843; eng.
  • Hinneburg H, Korac P, Schirmeister F, et al. Unlocking cancer glycomes from histopathological Formalin-fixed and Paraffin-embedded (FFPE) tissue microdissections. Mol Cell Proteomics. 2017 Apr;16(4):524–536. PubMed PMID: 28122943; PubMed Central PMCID: PMCPMC5383776. eng.
  • Malaker SA, Pedram K, Ferracane MJ, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7278–7287. PubMed PMID: 30910957; PubMed Central PMCID: PMCPMC6462054. eng.
  • Yang W, Ao M, Hu Y, et al. Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol Syst Biol. 2018 Nov 20;14(11):e8486. PubMed PMID: 30459171; PubMed Central PMCID: PMCPMC6243375. eng.
  • Tzanakakis G, Neagu M, Tsatsakis A, et al. Proteoglycans and immunobiology of cancer-therapeutic implications. Front Immunol. 2019;10:875. PubMed PMID: 31068944; PubMed Central PMCID: PMCPMC6491844. eng.
  • Soliman NA, Yussif SM, Shebl AM. Syndecan-1 could be added to hormonal receptors and HER2/neu in routine assessment of invasive breast carcinoma, relation of its expression to prognosis and clinicopathological parameters. Pathol Res Pract. 2019 May;215(5):977–982. PubMed PMID: 30738694; eng.
  • Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res. 2018;10:6823–6833. PubMed PMID: 30573992; eng.
  • Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016 Jul 20;34(21):2460–2467. PubMed PMID: 27138582; eng.
  • Adams S, Loi S, Toppmeyer D, et al. Phase 2 study of pembrolizumab as first-line therapy for PD-L1–positive metastatic triple-negative breast cancer (mTNBC): preliminary data from KEYNOTE-086 cohort B. J Clin Oncol. 2017 May 20;35(15_suppl):1088.
  • Adams S, Schmid P, Rugo HS, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol. 2017 May 20;35(15_suppl):1008.
  • Li C-W, Lim S-O, Chung EM, et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018;33(2):187–201.e10.
  • Salatino M, Girotti MR, Rabinovich GA. Glycans pave the way for immunotherapy in triple-negative breast cancer. Cancer Cell. 2018;33(2):155–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.