503
Views
12
CrossRef citations to date
0
Altmetric
Review

Function is what counts: how microbial community complexity affects species, proteome and pathway coverage in metaproteomics

, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 163-173 | Received 18 Nov 2019, Accepted 02 Mar 2020, Published online: 15 Mar 2020

References

  • Wilpiszeski RL, Aufrecht JA, Retterer ST, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl Environ Microbiol. 2019;85(14). DOI:10.1128/AEM.00324-19.
  • Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–1039.
  • Harris JM. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol. 1993;25(3):195–231.
  • Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl. 1997;222:3–9.
  • Zhang X, Figeys D. Perspective and guidelines for metaproteomics in microbiome studies. J Proteome Res. 2019;18(6):2370–2380.
  • Escobar-Zepeda A, Ernestina Gody-Lozano E, Raggi L, et al. Analysis of sequencing strategies and tools for taxonomic annotation: defining standards for progressive metagenomics. Sci Rep. 2018;8. DOI:10.1038/s41598-018-30515-5.
  • Singer E, Bushnell B, Coleman-Derr D, et al. High-resolution phylogenetic microbial community profiling. Isme J. 2016;10(8):2020–2032.
  • Raju SC, Lagström S, Ellonen P, et al. Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. J Microbiol Methods. 2018;147:76–86.
  • Yates JR. Proteomics of communities: metaproteomics. J Proteome Res. 2019;18(6):2359.
  • Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–821.
  • Iwai S, Weinmaier T, Schmidt BL, et al. Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. Plos One. 2016;11(11):e0166104.
  • Koboldt DC, Steinberg K, Larson D, et al. The next-generation sequencing revolution and its impact on genomics. Cell. 2013;155(1):27–38.
  • Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8.
  • Siggins A, Gunnigle E, Abram F. Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol. 2012;80(2):265–280.
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196.
  • Wilmes P, Bond PL. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol. 2004;6(9):911–920.
  • von Bergen M, Jehmlich N, Taubert M, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. Isme J. 2013;7(10):1877–1885.
  • Braga RM, Dourado MN, Araujo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol. 2016;47:86–98.
  • Xiao JQ, Tanca A, Jia B, et al. Metagenomic taxonomy-guided database-searching strategy for improving metaproteomic analysis. J Proteome Res. 2018;17(4):1596–1605.
  • Kleiner M, Thorson E, Sharp CE, et al. Assessing species biomass contributions in microbial communities via metaproteomics. Nat Commun. 2017;8(1):1558.
  • Hettich RL, Pan C, Chourey K, et al. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem. 2013;85(9):4203–4214.
  • Heyer R, Kohrs F, Reichl U, et al. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol. 2015;8(5):749–763.
  • Jordan F, Lauria M, Scotti M, et al. Diversity of key players in the microbial ecosystems of the human body. Sci Rep. 2015;5(1). DOI:10.1038/srep15920.
  • Guijas C, Montenegro-Burke JR, Warth B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–320.
  • Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep. 2014;15(6):657–669.
  • Mumtaz MW, Hamid AA, Akhtar MT, et al. An overview of recent developments in metabolomics and proteomics - phytotherapic research perspectives. Front Life Sci. 2017;10(1):1–37.
  • Lu WY, Su X, Klein MS, et al. Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem. 2017;86(1):277–304.
  • Baumann S, Kalkhof S, Hackermüller J, et al. Requirements and perspectives for integrating metabolomics with other omics data. Current Metabol. 2013;1(1):15–27.
  • Jehmlich N, Vogt C, Lünsmann V, et al. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.
  • Seifert J, Taubert M, Jehmlich N, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev. 2012;31(6):683–697.
  • Kleiner M, Dong X, Hinzke T, et al. Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. Proc Natl Acad Sci U S A. 2018;115(24): E5576–E5584. doi:10.1073/pnas.1722325115.
  • Kleiner M. Metaproteomics: much more than measuring gene expression in microbial communities. Msystems. 2019;4(3). DOI:10.1128/mSystems.00115-19
  • Herbst FA, Lünsmann V, Kjeldal H, et al. Enhancing metaproteomics–The value of models and defined environmental microbial systems. Proteomics. 2016;16(5):783–798.
  • Muth T, Benndorf D, Reichl U, et al. Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Mol Biosyst. 2013;9(4):578–585.
  • von Bergen M, Jehmlich N, Taubert M, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. Isme J. 2013;7(10):1877–1885.
  • Yates JR 3rd. Recent technical advances in proteomics. F1000Res. 2019;8(F1000 Faculty Rev):351.
  • Zhang X, Li L, Butcher J, et al. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1). DOI:10.1186/s40168-019-0767-6.
  • Wilmes P, Heintz-Buschart A, Bond PL. A decade of metaproteomics: where we stand and what the future holds. Proteomics. 2015;15(20):3409–3417.
  • Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017;42(2):98–110.
  • Devabhaktuni A, Lin S, Zhang L, et al. TagGraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat Biotechnol. 2019;37(4):469–479.
  • Wang Y, et al. A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. Plos One. 2012;7(10):e47530.
  • Caro-Quintero A, Ochman H. Assessing the unseen bacterial diversity in microbial communities. Genome Biol Evol. 2015;7(12):3416–3425.
  • Tanca A, Palomba A, Fraumene C, et al. The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome. 2016;4(1):51.
  • Geron A, Werner J, Wattiez R, et al. Deciphering the functioning of microbial communities: shedding light on the critical steps in metaproteomics. Front Microbiol. 2019;10. DOI:10.3389/fmicb.2019.02395.
  • Schiebenhoefer H, Van Den Bossche T, Fuchs S, et al. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev Proteomics. 2019;16(5):375–390.
  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics. 2005;4(10):1419–1440.
  • Cox J, Mann M. Is proteomics the new genomics? Cell. 2007;130(3):395–398.
  • Feist P, Hummon AB. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci. 2015;16(2):3537–3563.
  • Heyer R, Schallert K, Zoun R, et al. Challenges and perspectives of metaproteomic data analysis. J Biotechnol. 2017;261:24–36.
  • Schape SS, Krause JL, Engelmann B, et al. The simplified human intestinal microbiota (SIHUMIx) shows high structural and functional resistance against changing transit times in in vitro bioreactors. Microorganisms. 2019;7(12):641.
  • Becker N, Kunath J, Loh G, et al. Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes. 2011;2(1):25–33.
  • Krause JL, Schape SS, Engelmann B, et al. Changes in pH can modify the ability of a simplified human intestinal microbiota to stimulate MAIT cells. Eur J Immunol. 2019;49:39.
  • McDonald JAK, Fuentes S, Schroeter K, et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods. 2015;108:36–44.
  • Starke R, Müller M, Gaspar M, et al. Candidate Brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. J Proteomics. 2017;152:153–160.
  • Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459):431–437.
  • Stirling G, Wilsey B. Empirical relationships between species richness, evenness, and proportional diversity. Am Nat. 2001;158(3):286–299.
  • Davis SC, Yadav JS, Barrow SD, et al. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. Microbiologyopen. 2017;6(4):e00476.
  • Macarthur RH. Patterns of species diversity. Biol Rev. 1965;40(4):510-+.
  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423.
  • Gotelli NJ, Colwell RK. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett. 2001;4(4):379–391.
  • Hughes JB, Hellmann JJ. The application of rarefaction techniques to molecular inventories of microbial diversity. Methods Enzymol. 2005;397:292–308.
  • Jousset A, Bienhold C, Chatzinotas A, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. Isme J. 2017;11(4):853–862.
  • Karpinets TV, Gopalakrishnan V, Wargo J, et al. Linking associations of rare low-abundance species to their environments by association networks. Front Microbiol. 2018;9. DOI:10.3389/fmicb.2018.00297.
  • Escalas A, Hale L, Voordeckers JW, et al. Microbial functional diversity: from concepts to applications. Ecol Evol. 2019;9(20):12000–12016.
  • Haange SB, Jehmlich N. Proteomic interrogation of the gut microbiota: potential clinical impact. Expert Rev Proteomics. 2016;13(6):535–537.
  • Keiblinger KM, Fuchs S, Zechmeister-Boltenstern S, et al. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding. FEMS Microbiol Ecol. 2016;92(11):fiw180.
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • Huerta-Cepas J, Szklarczyk D, Forslund K, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44(D1):D286–D293.
  • Galperin MY, Makarova KS, Wolf YI, et al. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43(D1):D261–D269.
  • Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–731.
  • Partridge JD, Scott C, Tang Y, et al. Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem. 2006;281(38):27806–27815.
  • Xiao Y, Angulo MT, Friedman J, et al. Mapping the ecological networks of microbial communities. Nat Commun. 2017;8(1):2042.
  • Wang M, Herrmann CJ, Simonovic M, et al. Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics. 2015;15(18):3163–3168.
  • Xiong WL, Abraham PE, Li Z, et al. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics. 2015;15(20):3424–3438.
  • Rechenberger J, Samaras P, Jarzab A, et al. Challenges in clinical metaproteomics highlighted by the analysis of acute leukemia patients with gut colonization by multidrug-resistant enterobacteriaceae. Proteomes. 2019;7(1):E2.
  • Gutleben J, Chaib De Mares M, van Elsas JD, et al. The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol. 2018;44(2):212–229.
  • Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11(11):1114–1125.
  • Taubert M, Vogt C, Wubet T, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. Isme J. 2012;6(12):2291–2301.
  • Oberbach A, Haange S-B, Schlichting N, et al. Metabolic in vivo labeling highlights differences of metabolically active microbes from the mucosal gastrointestinal microbiome between high-fat and normal chow diet. J Proteome Res. 2017;16(4):1593–1604.
  • Blumert C, Kalkhof S, Brocke-Heidrich K, et al. Analysis of the STAT3 interactome using in-situ biotinylation and SILAC. J Proteomics. 2013;94:370–386.
  • Haange S-B, Oberbach A, Schlichting N, et al. Metaproteome analysis and molecular genetics of rat intestinal microbiota reveals section and localization resolved species distribution and enzymatic functionalities. J Proteome Res. 2012;11(11):5406–5417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.