14,431
Views
60
CrossRef citations to date
0
Altmetric
Review

Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation

ORCID Icon, , &
Pages 243-255 | Received 07 Feb 2020, Accepted 06 May 2020, Published online: 04 Jun 2020

References

  • Toubiana D, Fernie AR, Nikoloski Z, et al. Network analysis: tackling complex data to study plant metabolism. Trends Biotechnol. 2013 January 1;31(1):29–36.
  • Beleggia R, Omranian N, Holtz Y, et al. Comparative analysis based on transcriptomics and metabolomics data reveal differences between emmer and durum wheat in response to nitrogen starvation. bioRxiv. 2020. https://doi.org/10.1101/2020.02.03.931717.
  • Frainay C, Jourdan F. Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief Bioinform. 2016;18(1):43–56.
  • Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature. 2000 October 01;407(6804):651–654.
  • Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004 Feb 1;5(2):101–113.
  • Arita M. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci U S A. 2004;101(6):1543–1547.
  • Batushansky A, Matsuzaki S, Newhardt MF, et al. GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting [journal article]. Metabolomics. 2019 January 28;15(2):18.
  • Faust K, Croes D, van Helden J. Prediction of metabolic pathways from genome-scale metabolic networks. Biosystems. 2011 August 1;105(2):109–121.
  • Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc. 2008 August 1;3(8):1328–1340.
  • Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010 March 1;28(3):245–248.
  • Töpfer N, Kleessen S, Nikoloski Z. Integration of metabolomics data into metabolic networks [Review]. Front Plant Sci. 2015 February 17;6(49). DOI:10.3389/fpls.2015.00049
  • Basler G, Fernie Alisdair R, Nikoloski Z. Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Biosci Rep. 2018;38(6). DOI:10.1042/BSR20170224
  • Bordbar A, Monk JM, King ZA, et al. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet. 2014 Feb 1;15(2):107–120.
  • Nikoloski Z, Perez-Storey R, Sweetlove LJ. Inference and prediction of metabolic network fluxes. Plant Physiol. 2015;169(3):1443–1455.
  • Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc. 2006 Jun 01;1(1):387–396.
  • Tohge T, Fernie AR. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc. 2010 Jun 10 online;5(6):1210.
  • Šimura J, Antoniadi I, Široká J, et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177(2):476–489.
  • Morgenthal K, Weckwerth W, Steuer R. Metabolomic networks in plants: transitions from pattern recognition to biological interpretation. Biosystems. 2006;83(2):108–117.
  • Weckwerth W, Loureiro ME, Wenzel K, et al. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci U S A. 2004;101(20):7809–7814.
  • Angelovici R, Batushansky A, Deason N, et al. Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiol. 2017;173(1):872–886.
  • Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform. 2006;7(2):151–158.
  • Usadel B, Obayashi T, Mutwil M, et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009;32(12):1633–1651.
  • Wisecaver JH, Borowsky AT, Tzin V, et al. A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell. 2017;29(5):944–959.
  • Almquist J, Cvijovic M, Hatzimanikatis V, et al. Kinetic models in industrial biotechnology – improving cell factory performance. Metab Eng. 2014;24:38–60.
  • Camacho D, de la Fuente A, Mendes P. The origin of correlations in metabolomics data. Metabolomics. 2005;1(1):53–63.
  • Krumsiek J, Suhre K, Illig T, et al. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol. 2011;5(1):21.
  • de la Fuente A, Bing N, Hoeschele I, et al. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics. 2004;20(18):3565–3574.
  • Basu S, Duren W, Evans CR, et al. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics. 2017;33(10):1545–1553.
  • Schäfer J, Strimmer K. Learning large‐scale graphical gaussian models from genomic data. AIP Conf Proc. 2005;776(1):263–276.
  • Müller-Linow M, Weckwerth W, Hütt M-T. Consistency analysis of metabolic correlation networks. BMC Syst Biol. 2007 Sep 24;1(1):44.
  • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2007;9(3):432–441.
  • Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics. 2012;13(1):328.
  • Suarez-Diez M, Saccenti E. Effects of sample size and dimensionality on the performance of four algorithms for inference of association networks in metabonomics. J Proteome Res. 2015 Sep 4;14(12):5119–5130.
  • DiLeo MV, Strahan GD, den Bakker M, et al. Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PloS One. 2011;6(10):e26683–e26683..
  • Saccenti E, Suarez-Diez M, Luchinat C, et al. Probabilistic networks of blood metabolites in healthy subjects as indicators of latent cardiovascular risk. J Proteome Res. 2015 Feb 6;14(2):1101–1111.
  • Fukushima A. DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene. 2013;518(1):209–214.
  • Roessner U, Luedemann A, Brust D, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.
  • Obata T, Florian A, Timm S, et al. On the metabolic interactions of (photo)respiration. J Exp Bot. 2016;67(10):3003–3014.
  • Perez de Souza L, Garbowicz K, Brotman Y, et al. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiol. 2020; 182(2):857–869.
  • Szymanski J, Jozefczuk S, Nikoloski Z, et al. Stability of metabolic correlations under changing environmental conditions in Escherichia coli–a systems approach. PloS One. 2009;4(10):e7441–e7441.
  • Rosato A, Tenori L, Cascante M, et al. From correlation to causation: analysis of metabolomics data using systems biology approaches [journal article]. Metabolomics. 2018 Feb 27;14(4):37.
  • Batushansky A, Toubiana D, Fait A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed Res Int. 2016;2016:9.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov 1;13(11):2498–2504.
  • Fukushima A, Kusano M, Redestig H, et al. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Syst Biol. 2011;5(1):1.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
  • Wen B, Mei Z, Zeng C, et al. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinf. 2017;18(1):183.
  • Ma J, Karnovsky A, Afshinnia F, et al. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics. 2019;35(18):3441–3452.
  • Faith JJ, Hayete B, Thaden JT, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):e8–e8.
  • Jahagirdar S, Suarez-Diez M, Saccenti E. Simulation and reconstruction of metabolite–metabolite association networks using a metabolic dynamic model and correlation based algorithms. J Proteome Res. 2019 Mar 1;18(3):1099–1113.
  • Vignoli A, Tenori L, Giusti B, et al. Differential network analysis reveals metabolic determinants associated with mortality in acute myocardial infarction patients and suggests potential mechanisms underlying different clinical scores used to predict death. J Proteome Res. 2020;19(2):949–961.
  • Wolfender J-L, Nuzillard J-M, van der Hooft JJJ, et al. accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography–high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal Chem. 2019;91(1):704–742.
  • Paglia G, Williams JP, Menikarachchi L, et al. Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem. 2014;86(8):3985–3993.
  • Zhang X, Quinn K, Cruickshank-Quinn C, et al. The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol. 2018;42:60–66.
  • Fox Ramos AE, Evanno L, Poupon E, et al. Natural products targeting strategies involving molecular networking: different manners, one goal [10.1039/C9NP00006B]. Nat Prod Rep. 2019;36(7):960–980.
  • Watrous J, Roach P, Alexandrov T, et al. Mass spectral molecular networking of living microbial colonies. Proc Nat Acad Sci. 2012;109(26):E1743–E1752.
  • Allard P-M, Péresse T, Bisson J, et al. Integration of molecular networking and in-Silico MS/MS fragmentation for natural products dereplication. Anal Chem. 2016 Mar 15;88(6):3317–3323.
  • Ueoka R, Uria AR, Reiter S, et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol. 2015 Sep 1;11(9):705–712.
  • Matsuda F, Nakabayashi R, Yang Z, et al. Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J. 2015;81(1):13–23.
  • Bouslimani A, Porto C, Rath CM, et al. Molecular cartography of the human skin surface in 3D. Proc Nat Acad Sci. 2015;112(17):E2120–E2129.
  • Kwon Y-K, Ha IJ, Bae H-W, et al. Dose-dependent metabolic alterations in human cells exposed to gamma irradiation. Plos One. 2014;9(11):e113573.
  • Frank AM, Bandeira N, Shen Z, et al. Clustering millions of tandem mass spectra. J Proteome Res. 2008;7(1):113–122.
  • Yang JY, Sanchez LM, Rath CM, et al. Molecular networking as a dereplication strategy. J Nat Prod. 2013 September 27;76(9):1686–1699.
  • Wang M, Carver JJ, Phelan VV, et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol. 2016;34(8):828–837.
  • Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015 May 4 online;12(6):523.
  • Pluskal T, Castillo S, Villar-Briones A, et al. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11(1):395.
  • Röst HL, Sachsenberg T, Aiche S, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016 Sep 1;13(9):741–748.
  • Smith CA, Want EJ, O’Maille G, et al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006 Feb 1;78(3):779–787.
  • Nothias LF, Petras D, Schmid R, et al. Feature-based molecular networking in the GNPS analysis environment. bioRxiv. 2019.DOI: https://doi.org/10.1101/812404
  • da Silva RR, Wang M, Nothias L-F, et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol. 2018;14(4):e1006089.
  • Ruttkies C, Schymanski EL, Wolf S, et al. MetFrag relaunched: incorporating strategies beyond in silico fragmentation [journal article]. J Cheminform. 2016 January 29;8(1):3.
  • Gerlich M, Neumann S. MetFusion: integration of compound identification strategies. J Mass Spectrom. 2013;48(3):291–298.
  • van der Hooft JJJ, Wandy J, Barrett MP, et al. Topic modeling for untargeted substructure exploration in metabolomics. Proc Nat Acad Sci. 2016;113(48):13738–13743.
  • Aksenov A, Laponogov I, Zhang Z, et al. Algorithmic Learning for Auto-deconvolution of GC-MS Data to Enable Molecular Networking within GNPS. bioRxiv. 2020. https://doi.org/10.1101/2020.01.13.905091
  • Perez de Souza L, Naake T, Tohge T, et al. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience. 2017;6(7). DOI:10.1093/gigascience/gix037.
  • Morreel K, Saeys Y, Dima O, et al. Systematic structural characterization of metabolites in arabidopsis via candidate substrate-product pair networks. Plant Cell. 2014;26(3):929–945.
  • Perez de Souza L, Scossa F, Proost S, et al. Multi-tissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (Phaseolus vulgaris) metabolome. Plant J. 2019;97(6):1132–1153.
  • Hartmann AC, Petras D, Quinn RA, et al. Meta-mass shift chemical profiling of metabolomes from coral reefs. Proc Nat Acad Sci. 2017;114(44):11685–11690.
  • Naake T, Fernie AR. MetNet: metabolite network prediction from high-resolution mass spectrometry data in R aiding metabolite annotation. Anal Chem. 2019 Feb 5;91(3):1768–1772.
  • Kuhl C, Tautenhahn R, Böttcher C, et al. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012 Jan 3;84(1):283–289.
  • Forcisi S, Moritz F, Lucio M, et al. Solutions for low and high accuracy mass spectrometric data matching: a data-driven annotation strategy in nontargeted metabolomics. Anal Chem. 2015 Sep 1;87(17):8917–8924.
  • Kankainen M, Gopalacharyulu P, Holm L, et al. MPEA—metabolite pathway enrichment analysis. Bioinformatics. 2011;27(13):1878–1879.
  • Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(suppl_2):W71–W77.
  • Chagoyen M, Pazos F. MBRole: enrichment analysis of metabolomic data. Bioinformatics. 2011;27(5):730–731.
  • Marco-Ramell A, Palau-Rodriguez M, Alay A, et al. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data [journal article]. BMC Bioinformatics. 2018 Jan 2;19(1):1.
  • Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;45(D1):D353–D361.
  • Caspi R, Billington R, Keseler IM, et al. The metaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res. 2020;48(D1):D445–D453.
  • Ivanisevic J, Want EJ. From samples to insights into metabolism: uncovering biologically relevant information in LC-HRMS metabolomics data. Metabolites. 2019;9(12):308.
  • Stanstrup J, Broeckling CD, Helmus R, et al. The metaRbolomics toolbox in bioconductor and beyond. Metabolites. 2019;9(10):200.
  • Aggio RBM, Ruggiero K, Villas-Bôas SG. Pathway activity profiling (PAPi): from the metabolite profile to the metabolic pathway activity. Bioinformatics. 2010;26(23):2969–2976.
  • Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–W494.
  • Cottret L, Frainay C, Chazalviel M, et al. MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 2018;46(W1):W495–W502.
  • Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 2015;11(2):e1004085.
  • Barupal DK, Fiehn O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci Rep. 2017 November 06;7(1):14567.
  • Schilling CH, Schuster S, Palsson BO, et al. Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic Era. Biotechnol Prog. 1999 Jan 1;15(3):296–303.
  • Ginsburg H. Caveat emptor: limitations of the automated reconstruction of metabolic pathways in plasmodium. Trends Parasitol. 2009;25(1):37–43.
  • Lacroix V, Cottret L, Thébault P, et al. An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput Biol Bioinform. 2008;5(4):594–617.
  • Arita M. Metabolic reconstruction using shortest paths. Simul Pract Theory. 2000 April 15;8(1):109–125.
  • Holme P. Model validation of simple-graph representations of metabolism. J Royal Soc Interface. 2009;6(40):1027–1034.
  • Croes D, Couche F, Wodak SJ, et al. Inferring meaningful pathways in weighted metabolic networks. J Mol Biol. 2006 Feb 10;356(1):222–236.
  • Blum T, Kohlbacher O. MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics. 2008;24(18):2108–2109.
  • Latendresse M, Krummenacker M, Karp PD. Optimal metabolic route search based on atom mappings. Bioinformatics. 2014;30(14):2043–2050.
  • Pertusi DA, Stine AE, Broadbelt LJ, et al. Efficient searching and annotation of metabolic networks using chemical similarity. Bioinformatics. 2014;31(7):1016–1024.
  • Frainay C, Aros S, Chazalviel M, et al. MetaboRank: network-based recommendation system to interpret and enrich metabolomics results. Bioinformatics. 2018;35(2):274–283.
  • Rahman SA, Torrance G, Baldacci L, et al. Reaction decoder tool (RDT): extracting features from chemical reactions. Bioinformatics. 2016;32(13):2065–2066.
  • Faust K, Dupont P, Callut J, et al. Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics. 2010;26(9):1211–1218.
  • Milreu PV, Klein CC, Cottret L, et al. Telling metabolic stories to explore metabolomics data: a case study on the yeast response to cadmium exposure. Bioinformatics. 2013;30(1):61–70.
  • Weiss N, Barbier Saint Hilaire P, Colsch B, et al. Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J Hepatol. 2016 Dec 1;65(6):1120–1130.
  • Sridharan VG, Bruinsma GB, Bale SS, et al. Metabolomic modularity analysis (MMA) to quantify human liver perfusion dynamics. Metabolites. 2017;7(4):58.
  • Li S, Park Y, Duraisingham S, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9(7):e1003123.
  • Pirhaji L, Milani P, Leidl M, et al. Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods. 2016 Sep 1;13(9):770–776.
  • Alden N, Krishnan S, Porokhin V, et al. Biologically consistent annotation of metabolomics data. Anal Chem. 2017 December 19;89(24):13097–13104.
  • Allen F, Greiner R, Wishart D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification [journal article]. Metabolomics. 2015 Feb 1;11(1):98–110.
  • Tautenhahn R, Cho K, Uritboonthai W, et al. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol. 2012 Sep 1;30(9):826–828.
  • Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2017;46(D1):D608–D617.
  • Shen X, Wang R, Xiong X, et al. Metabolic reaction network-based recursivemetabolite annotation for untargeted metabolomics. Nat Commun. 2019 April 3;10(1):1516.
  • Moreno P, Beisken S, Harsha B, et al. BiNChE: A web tool and library for chemical enrichment analysis based on the ChEBI ontology. BMC Bioinformatics. 2015 Feb 21;16(1):56.
  • Djoumbou Feunang Y, Eisner R, Knox C, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016 Nov 4;8(1):61.
  • Ernst M, Kang KB, Caraballo-Rodríguez AM, et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites. 2019;9(7):144.
  • Schwahn K, Beleggia R, Omranian N, et al. Stoichiometric correlation analysis: principles of metabolic functionality from metabolomics data [Original research]. Front Plant Sci. 2017 Dec 18;8(2152). DOI:10.3389/fpls.2017.02152.
  • Öksüz M, Sadıkoğlu H, Çakır T. Sparsity as cellular objective to infer directed metabolic networks from steady-state metabolome data: a theoretical analysis. PloS One. 2013;8(12):e84505–e84505.
  • Sontag E, Kiyatkin A, Kholodenko BN. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics. 2004;20(12):1877–1886.
  • Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J. 2018;94(6):933–942.
  • Nguyen DH, Nguyen CH, Mamitsuka H. ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra. Bioinformatics. 2019;35(14):i164–i172.
  • Ji H, Xu Y, Lu H, et al. Deep MS/MS-aided structural-similarity scoring for unknown metabolite identification. Anal Chem. 2019 May 7;91(9):5629–5637.
  • Gabelica V, Marklund E. Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol. 2018 Feb 1;42:51–59.