575
Views
14
CrossRef citations to date
0
Altmetric
Review

Skin proteomics – analysis of the extracellular matrix in health and disease

, &
Pages 377-391 | Received 07 Apr 2020, Accepted 20 May 2020, Published online: 19 Jun 2020

References

  • Vandergriff TW. Chapter 1. Anatomy and physiology. In: Dermatology. 4th ed. 2008. Elsevier, ISBN: 9780702062759.
  • Schaefer I, Rustenbach SJ, Zimmer L, et al. Prevalence of skin diseases in a cohort of 48,665 employees in Germany. DRM. 2008;217(2):169–172.
  • Iozzo RV, Gubbiotti MA. Extracellular matrix: the driving force of mammalian diseases. Matrix Biol. 2018;71-72:1–9.
  • Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol. 2011;3(4). DOI:10.1101/cshperspect.a005124
  • Hynes RO. The evolution of metazoan extracellular matrix. J Cell Biol. 2012;196(6):671–679.
  • Kivirikko KI. Collagens and their abnormalities in a wide spectrum of diseases. Ann Med. 1993;25(2):113–126.
  • Rappu P, Salo AM, Myllyharju J, et al. Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem. 2019;63(3):325–335.
  • Schmelzer CEH, Nagel MBM, Dziomba S, et al. Prolyl hydroxylation in elastin is not random. Biochim Biophys Acta. 2016;1860(10):2169–2177.
  • Vadon-Le Goff S, Hulmes DJS, Moali C. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol. 2015;44-46:14–23.
  • Schuppan D, Ashfaq-Khan M, Yang AT, et al. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 2018;68-69:435–451.
  • Bruckner-Tuderman L, Schnyder UW, Winterhalter KH, et al. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur J Biochem. 1987;165(3):607–611.
  • Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol. 2019;89:136–146.
  • Nystrom A, Bernasconi R, Bornert O. Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol. 2018;71-72:330–347.
  • Nystrom A, Bornert O, Kuhl T. Cell therapy for basement membrane-linked diseases. Matrix Biol. 2017;57-58:124–139.
  • Lechler T. Chapter 5, Growth and differentiation of the epidermis. In: Kang, Amagai, Bruckner, Enk, Margolis, McMichael, Orringer, editors. Fitzpatrick´s dermatology, 9th, 2019. 2 Bände (xxvii, 3949 Seiten). ISBN10 0071837795.
  • Murphy JE, Robert C, Kupper TS. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J Invest Dermatol. 2000;114(3):602–608.
  • Nauroy P, Nyström A. Kallikreins: essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Bio Plus. 2019;100019. DOI: 10.1016/j.mbplus.2019.100019
  • Abdayem R, Formanek F, Minondo AM, et al. Cell surface glycans in the human stratum corneum: distribution and depth-related changes. Exp Dermatol. 2016;25(11):865–871.
  • Sandjeu Y, Haftek M. Desmosealin and other components of the epidermal extracellular matrix. J Physiol Pharmacol. 2009;60(Suppl 4):23–30.
  • Dos Santos M, Michopoulou A, André-Frei V, et al. Perlecan expression influences the keratin 15-positive cell population fate in the epidermis of aging skin. Aging (Albany NY). 2016;8(4):751–768.
  • Gallo R, Kim C, Kokenyesi R, et al. Syndecans-1 and −4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol. 1996;107(5):676–683.
  • Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.
  • Tidman MJ, Eady RA. Ultrastructural morphometry of normal human dermal-epidermal junction. The influence of age, sex, and body region on laminar and nonlaminar components. J Invest Dermatol. 1984;83(6):448–453.
  • Walko G, Castañón MJ, Wiche G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 2015;360(3):529–544.
  • Nishie W, Kiritsi D, Nyström A, et al. Dynamic interactions of epidermal collagen XVII with the extracellular matrix: laminin 332 as a major binding partner. Am J Pathol. 2011;179(2):829–837.
  • Koch M, Veit G, Stricker S, et al. Expression of type XXIII collagen mRNA and protein. J Biol Chem. 2006;281(30):21546–21557.
  • Peltonen S, Hentula M, Hägg P, et al. A novel component of epidermal cell–matrix and cell–cell contacts: transmembrane protein type XIII collagen. J Invest Dermatol. 1999;113(4):635–642.
  • Veit G, Zwolanek D, Eckes B, et al. Collagen XXIII, novel ligand for integrin alpha2beta1 in the epidermis. J Biol Chem. 2011;286(31):27804–27813.
  • Watanabe M, Natsuga K, Nishie W, et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. Elife. 2017;6. DOI:10.7554/eLife.26635.
  • Franzke C-W, Bruckner-Tuderman L, Blobel CP. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J Biol Chem. 2009;284(35):23386–23396.
  • Jacków J, Löffek S, Nyström A, et al. Collagen XVII shedding suppresses re-epithelialization by directing keratinocyte migration and dampening mTOR signaling. J Invest Dermatol. 2016;136(5):1031–1041.
  • Veit G, Zimina EP, Franzke C-W, et al. Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem. 2007;282(37):27424–27435.,
  • Te Molder L, Juksar J, Harkes R, et al. Tetraspanin CD151 and integrin alpha3beta1 contribute to the stabilization of integrin alpha6beta4-containing cell-matrix adhesions. J Cell Sci. 2019;132(19). DOI:10.1242/jcs.235366.
  • Hohenester E. Structural biology of laminins. Essays Biochem. 2019;63(3):285–295.
  • Wegner J, Loser K, Apsite G, et al. Laminin α5 in the keratinocyte basement membrane is required for epidermal-dermal intercommunication. Matrix Biol. 2016;56:24–41.
  • Morgner J, Ghatak S, Jakobi T, et al. Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun. 2015;6. DOI:10.1038/ncomms9198.
  • Has C, Nyström A. Epidermal basement membrane in health and disease. Curr Top Membr. 2015;76:117–170.
  • Hamill KJ, Langbein L, Jones JCR, et al. Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization. J Biol Chem. 2009;284(51):35588–35596.
  • Barrera V, Troughton LD, Iorio V, et al. Differential distribution of laminin N-terminus α31 across the ocular surface: implications for corneal wound repair. Invest Ophthalmol Vis Sci. 2018;59(10):4082–4093.
  • Walko G, Castanon MJ, Wiche G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 2015;360(3):529–544.
  • Has C, Nyström A, Saeidian AH, et al. Epidermolysis bullosa: molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol. 2018;71-72:313–329.
  • Behrens DT, Villone D, Koch M, et al. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem. 2012;287(22):18700–18709.
  • Ninomiya Y, Kagawa M, Iyama K, et al. Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J Cell Biol. 1995;130(5):1219–1229.
  • Bhave G, Colon S, Ferrell N. The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am J Physiol Renal Physiol. 2017;313(3):F596–F602.
  • Fukushige T, Kanekura T, Ohuchi E, et al. Immunohistochemical studies comparing the localization of type XV collagen in normal human skin and skin tumors with that of type IV collagen. J Dermatol. 2005;32(2):74–83.
  • Karppinen S-M, Honkanen H-K, Heljasvaara R, et al. Collagens XV and XVIII show different expression and localisation in cutaneous squamous cell carcinoma: type XV appears in tumor stroma, while XVIII becomes upregulated in tumor cells and lost from microvessels. Exp Dermatol. 2016;25(5):348–354.
  • Küttner V, Mack C, Rigbolt KTG, et al., Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol. 2013;9(1): 657.
  • Thriene K, Grüning BA, Bornert O, et al. Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol Cell Proteomics. 2018;17(4):565–579.
  • Bengtsson E, Mörgelin M, Sasaki T, et al. The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem. 2002;277(17):15061–15068.
  • Velez-DelValle C, Marsch-Moreno M, Castro-Muñozledo F, et al. Decorin gene expression and its regulation in human keratinocytes. Biochem Biophys Res Commun. 2011;411(1):168–174.
  • Muir AM, Massoudi D, Nguyen N, et al. BMP1-like proteinases are essential to the structure and wound healing of skin. Matrix Biol. 2016;56:114–131.
  • Rattenholl A, Pappano WN, Koch M, et al. Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem. 2002;277(29):26372–26378.
  • Veitch DP, Nokelainen P, McGowan KA, et al. Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem. 2003;278(18):15661–15668.
  • Broder C, Arnold P, Vadon-Le Goff S, et al. Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci USA. 2013;110(35):14219–14224.
  • Bekhouche M, Colige A. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology. Matrix Biol. 2015;44-46:46–53.
  • Rousselle P, Scoazec JY. Laminin 332 in cancer: when the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol. 2020;62:149–165.
  • Fyrand O. Studies on Fibronectin in the Skin. DRM. 1981;162(4):220–229.
  • O’Keefe EJ, Payne RE Jr., Russell N, et al. Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol. 1985;85(2):125–130.
  • Barker TH, Engler AJ. The provisional matrix: setting the stage for tissue repair outcomes. Matrix Biol. 2017;60-61:1–4.
  • Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005;118(7):1341–1353.
  • Kinsey R, Williamson MR, Chaudhry S, et al. Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci. 2008;121(16):2696–2704.
  • Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128(1):26–35.
  • Willenborg S, Eming SA. Cellular networks in wound healing. Science. 2018;362(6417):891–892.
  • Rognoni E, Pisco AO, Hiratsuka T, et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol Syst Biol. 2018;14(8):e8174.
  • Mittapalli VR, Madl J, Loffek S, et al. Injury-driven stiffening of the dermis expedites skin carcinoma progression. Cancer Res. 2016;76(4):940–951.
  • Cescon M, Gattazzo F, Chen P, et al. Collagen VI at a glance. J Cell Sci. 2015;128(19):3525–3531.
  • Martin P, Teodoro WR, Velosa APP, et al. Abnormal collagen V deposition in dermis correlates with skin thickening and disease activity in systemic sclerosis. Autoimmun Rev. 2012;11(11):827–835.
  • Bonod-Bidaud C, Roulet M, Hansen U, et al. In vivo evidence for a bridging role of a collagen V subtype at the epidermis-dermis interface. J Invest Dermatol. 2012;132(7):1841–1849.
  • Agarwal P, Zwolanek D, Keene DR, et al. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure. J Biol Chem. 2012;287(27):22549–22559.
  • Naylor EC, Watson REB, Sherratt MJ. Molecular aspects of skin ageing. Maturitas. 2011;69(3):249–256.
  • Eckersley A, Mellody KT, Pilkington S, et al. Structural and compositional diversity of fibrillin microfibrils in human tissues. J Biol Chem. 2018;293(14):5117–5133.
  • Haynes SL, Shuttleworth CA, Kielty CM. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization. Br J Dermatol. 1997;137(1):17–23.
  • Brinckmann J, Hunzelmann N, Kahle B, et al. Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab Invest. 2010;90(5):739–752.
  • Schiavinato A, Keene DR, Wohl AP, et al. Targeting of EMILIN-1 and EMILIN-2 to fibrillin microfibrils facilitates their incorporation into the extracellular matrix. J Invest Dermatol. 2016;136(6):1150–1160.,
  • Urban Z, Hucthagowder V, Schürmann N, et al. Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am J Hum Genet. 2009;85(5):593–605.
  • Grässel S, Unsöld C, Schäcke H, et al. Collagen XVI is expressed by human dermal fibroblasts and keratinocytes and is associated with the microfibrillar apparatus in the upper papillary dermis. Matrix Biol. 1999;18(3):309–317.
  • Schalkwijk J, Zweers MC, Steijlen PM, et al. A recessive form of the ehlers–danlos syndrome caused by tenascin-X deficiency. N Engl J Med. 2001;345(16):1167–1175.
  • Valcourt U, Alcaraz LB, Exposito J-Y, et al. Tenascin-X: beyond the architectural function. Cell Adh Migr. 2015;9(1–2):154–165.
  • Adachi E, Hopkinson I, Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol. 1997;173:73–156.
  • Brinckmann J, Bodo M, Brey M, et al. Analysis of the age-related composition of human skin collagen and collagens synthesized by fibroblast culture. Arch Dermatol Res. 1994;286(7):391–395.
  • D’Hondt S, Guillemyn B, Syx D, et al. Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol. 2018;70:72–83.
  • Wenstrup RJ, Florer JB, Brunskill EW, et al. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem. 2004;279(51):53331–53337.
  • Sun M, Chen S, Adams SM, et al. Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci. 2011;124(Pt 23):4096–4105.
  • Carrino DA, Sorrell JM, Caplan AI. Age-related changes in the proteoglycans of human skin. Arch Biochem Biophys. 2000;373(1):91–101.
  • Schönherr E, Beavan LA, Hausser H, et al. Differences in decorin expression by papillary and reticular fibroblasts in vivo and in vitro. Biochem J. 1993;290(Pt 3):893–899.
  • Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136(3):729–743.
  • Miyake N, Kosho T, Mizumoto S, et al. Loss-of-function mutations of CHST14 in a new type of ehlers-danlos syndrome. Hum Mutat. 2010;31(8):966–974.
  • Smith MM, Melrose J. Proteoglycans in normal and healing skin. Adv Wound Care (New Rochelle). 2015;4(3):152–173.
  • Bertheim U, Engström-Laurent A, Hofer P-A, et al. Loss of hyaluronan in the basement membrane zone of the skin correlates to the degree of stiff hands in diabetic patients. Acta Derm Venereol. 2002;82(5):329–334.
  • Hunzelmann N, Hafner M, Anders S, et al. BM-40 (osteonectin, SPARC) is expressed both in the epidermal and in the dermal compartment of adult human skin. J Invest Dermatol. 1998;110(2):122–126.
  • Sasaki T, Hohenester E, Göhring W, et al. Crystal structure and mapping by site-directed mutagenesis of the collagen-binding epitope of an activated form of BM-40/SPARC/osteonectin. Embo J. 1998;17(6):1625–1634.
  • Rentz TJ, Poobalarahi F, Bornstein P, et al. SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem. 2007;282(30):22062–22071.
  • Murota H, Lingli Y, Katayama I. Periostin in the pathogenesis of skin diseases. Cell Mol Life Sci. 2017;74(23):4321–4328.
  • Norris RA, Damon B, Mironov V, et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101(3):695–711.
  • Maruhashi T, Kii I, Saito M, et al. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem. 2010;285(17):13294–13303.
  • Uitto J, Li Q, Urban Z. The complexity of elastic fibre biogenesis in the skin – a perspective to the clinical heterogeneity of cutis laxa. Exp Dermatol. 2013;22(2):88–92.
  • Mikesh LM, Aramadhaka LR, Moskaluk C, et al. Proteomic anatomy of human skin. J Proteomics. 2013;84:190–200.
  • Etich J, Koch M, Wagener R, et al. Gene expression profiling of the extracellular matrix signature in macrophages of different activation status: relevance for skin wound healing. Int J Mol Sci. 2019;20(20):5086.
  • Shin J-W, Kwon S-H, Choi J-Y, et al. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int J Mol Sci. 2019;20(9):2126.
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351.
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–355.
  • Celis JE, Cruger D, Kiil J, et al. A two-dimensional gel protein database of noncultured total normal human epidermal keratinocytes: identification of proteins strongly up-regulated in psoriatic epidermis. Electrophoresis. 1990;11(3):242–254.
  • Celis JE, Rasmussen HH, Olsen E, et al. The human keratinocyte two-dimensional protein database (update 1994): towards an integrated approach to the study of cell proliferation, differentiation and skin diseases. Electrophoresis. 1994;15(11):1349–1458.
  • Rasmussen HH, Mortz E, Mann M, et al. Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing. Electrophoresis. 1994;15(3–4):406–416.
  • Sato H, Suzuki A, Funahashi M, et al. Characteristics of growth, morphology, contractility, and protein expression of fibroblasts derived from keloid. Wound Repair Regen. 1996;4(1):103–114.
  • Gromov P, Skovgaard GL, Palsdottir H, et al. Protein profiling of the human epidermis from the elderly reveals up-regulation of a signature of interferon-gamma-induced polypeptides that includes manganese-superoxide dismutase and the p85beta subunit of phosphatidylinositol 3-kinase. Mol Cell Proteomics. 2003;2(2):70–84.
  • Huang CM, Foster KW, DeSilva T, et al. Comparative proteomic profiling of murine skin. J Invest Dermatol. 2003;121(1):51–64.
  • Blonder J, Terunuma A, Conrads TP, et al. A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol. 2004;123(4):691–699.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–965.
  • Ong SE, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–386.
  • Zhu H, Hunter TC, Pan S, et al. Residue-specific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal Chem. 2002;74(7):1687–1694.
  • Zhu H, Pan S, Gu S, et al. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom. 2002;16(22):2115–2123.
  • Olsen JV, Blagoev B, Gnad F, et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3): 635–648.
  • Sprenger A, Kuttner V, Biniossek ML, et al. Comparative quantitation of proteome alterations induced by aging or immortalization in primary human fibroblasts and keratinocytes for clinical applications. Mol Biosyst. 2010;6(9):1579–1582.
  • Sprenger A, Weber S, Zarai M, et al. Consistency of the proteome in primary human keratinocytes with respect to gender, age, and skin localization. Mol Cell Proteomics. 2013;12(9):2509–2521.
  • Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–1169.
  • Dayon L, Hainard A, Licker V, et al. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem. 2008;80(8):2921–2931.
  • Christoforou AL, Lilley KS. Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem. 2012;404(4):1029–1037.
  • Keller M, Ruegg A, Werner S, et al. Active caspase-1 is a regulator of unconventional protein secretion. Cell. 2008;132(5):818–831.
  • Fuller HR, Man NT, Lam le T, et al. Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells. J Proteome Res. 2010;9(8):4228–4233.
  • Cox J, Hein MY, Luber CA, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–2526.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111 016717.
  • Casares L, Garcia V, Garrido-Rodriguez M, et al. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020;28:101321.
  • Carne NA, Bell S, Brown AP, et al. Reductive stress selectively disrupts collagen homeostasis and modifies growth factor-independent signaling through the MAPK/Akt pathway in human dermal fibroblasts. Mol Cell Proteomics. 2019;18(6):1123–1137.
  • Azimi A, Yang P, Ali M, et al. Data independent acquisition proteomic analysis can discriminate between actinic keratosis, bowen’s disease, and cutaneous squamous cell carcinoma. J Invest Dermatol. 2020;140(1):212–222 e11.
  • Hennrich ML, Gavin AC. Quantitative mass spectrometry of posttranslational modifications: keys to confidence. Sci Signal. 2015;8(371):re5.
  • von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics. 2015;12(5):469–487.
  • Yamagata A, Kristensen DB, Takeda Y, et al. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics. 2002;2(9):1267–1276.
  • Yang F, Stenoien DL, Strittmatter EF, et al. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res. 2006;5(5):1252–1260.
  • Yang F, Waters KM, Miller JH, et al. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation. PLoS One. 2010;5(11):e14152.
  • Shrestha R, Little KA, Tamayo JV, et al. Mitotic control of planar cell polarity by polo-like kinase 1. Dev Cell. 2015;33(5):522–534.
  • Bao X, Siprashvili Z, Zarnegar BJ, et al. CSNK1a1 regulates PRMT1 to maintain the progenitor state in self-renewing somatic tissue. Dev Cell. 2017;43(2):227–239 e5.
  • Lee P, Jiang S, Li Y, et al. Phosphorylation of Pkp1 by RIPK4 regulates epidermal differentiation and skin tumorigenesis. Embo J. 2017;36(13):1963–1980.
  • Perluigi M, Di Domenico F, Blarzino C, et al. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach. Proteome Sci. 2010;8(1):13.
  • Kuttner V, Mack C, Gretzmeier C, et al. Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol. 2014;134(9):2381–2389.
  • Eckhard U, Marino G, Butler GS, et al. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie. 2016;122:110–118.
  • de Veer SJ, Furio L, Harris JM, et al. Proteases and proteomics: cutting to the core of human skin pathologies. Proteomics Clin Appl. 2014;8(5–6):389–402.
  • Broder C, Arnold P, Vadon-Le Goff S, et al. Metalloproteases meprin alpha and meprin beta are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci U S A. 2013;110(35):14219–14224.
  • Schlage P, Kockmann T, Sabino F, et al. Matrix metalloproteinase 10 degradomics in keratinocytes and epidermal tissue identifies bioactive substrates with pleiotropic functions. Mol Cell Proteomics. 2015;14(12):3234–3246.
  • Nishie W, Lamer S, Schlosser A, et al. Ectodomain shedding generates neoepitopes on collagen XVII, the major autoantigen for bullous pemphigoid. J Immunol. 2010;185(8):4938–4947.
  • Hynes RO, Naba A. Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4(1):a004903.
  • Mecham RP (2011).
  • Naba A, Clauser KR, Hoersch S, et al., The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4): M111 014647.
  • Tolle RC, Dengjel J. Effects of the extracellular matrix on the proteome of primary skin fibroblasts. Methods Mol Biol. 1993;193-204:2019.
  • Botta A, Delteil F, Mettouchi A, et al. Confluence switch signaling regulates ECM composition and the plasmin proteolytic cascade in keratinocytes. J Cell Sci. 2012;125(18):4241–4252.
  • Hiebert P, Wietecha MS, Cangkrama M, et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev Cell. 2018;46(2):145–161 e10.
  • Has C, Nystrom A, Saeidian AH, et al. Epidermolysis bullosa: molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol. 2018;71-72:313–329.
  • Sakai LY, Keene DR, Morris NP, et al. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986;103(4):1577–1586.
  • Nystrom A, Velati D, Mittapalli VR, et al. Collagen VII plays a dual role in wound healing. J Clin Invest. 2013;123(8):3498–3509.
  • Fritsch A, Loeckermann S, Kern JS, et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest. 2008;118(5):1669–1679.
  • Shabani F, Farasat A, Mahdavi M, et al. Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res. 2018;67(10):801–812.
  • Nystrom A, Thriene K, Mittapalli V, et al. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms. EMBO Mol Med. 2015;7(9):1211–1228. $.
  • Ng YZ, Pourreyron C, Salas-Alanis JC, et al. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 2012;72(14):3522–3534.
  • Foll MC, Fahrner M, Gretzmeier C, et al. Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol. 2018;66:1–21.
  • Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 2019;21(1):18–24.
  • Driskell RR, Lichtenberger BM, Hoste E, et al., Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504(7479): 277–281.
  • Nanney LB, Caldwell RL, Pollins AC, et al. Novel approaches for understanding the mechanisms of wound repair. J Investig Dermatol Symp Proc. 2006;11(1):132–139.
  • Aden N, Shiwen X, Aden D, et al. Proteomic analysis of scleroderma lesional skin reveals activated wound healing phenotype of epidermal cell layer. Rheumatology (Oxford). 2008;47(12):1754–1760.
  • Eming SA, Koch M, Krieger A, et al., Differential proteomic analysis distinguishes tissue repair biomarker signatures in wound exudates obtained from normal healing and chronic wounds. J Proteome Res. 2010;9(9): 4758–4766.
  • Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35(2):201–212.
  • Sabino F, Hermes O, Egli FE, et al. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates. Mol Cell Proteomics. 2015;14(2):354–370.
  • Sabino F, Egli FE, Savickas S, et al. Comparative degradomics of porcine and human wound exudates unravels biomarker candidates for assessment of wound healing progression in trauma patients. J Invest Dermatol. 2018;138(2):413–422.
  • Taverna D, Pollins AC, Sindona G, et al. Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers. J Proteome Res. 2015;14(2):986–996.
  • Gessel M, Spraggins JM, Voziyan P, et al. Decellularization of intact tissue enables MALDI imaging mass spectrometry analysis of the extracellular matrix. J Mass Spectrom. 2015;50(11):1288–1293.
  • Slany A, Meshcheryakova A, Beer A, et al. Plasticity of fibroblasts demonstrated by tissue-specific and function-related proteome profiling. Clin Proteomics. 2014;11(1):41.
  • Berberich B, Thriene K, Gretzmeier C, et al. Proteomic profiling of fibroblasts isolated from chronic wounds identifies disease-relevant signaling pathways. J Invest Dermatol. 2020. in press. DOI:10.1016/j.jid.2020.02.040
  • Um E, Oh JM, Granick S, et al. Cell migration in microengineered tumor environments. Lab Chip. 2017;17(24):4171–4185.
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352). DOI:10.1126/science.aan2507.
  • Schwenk JM, Omenn GS, Sun Z, et al. The human plasma proteome draft of 2017: building on the human plasma peptideatlas from mass spectrometry and complementary assays. J Proteome Res. 2017;16(12):4299–4310.
  • Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450.
  • Samaras P, Schmidt T, Frejno M, et al. ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Res. 2020;48(D1):D1153–D1163.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.
  • UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515.
  • Vlodavsky I. Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. 1999;1(1):10.4.1–10.4.14.
  • Fischer R, Kessler BM. Gel-aided sample preparation (GASP)–a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics. 2015;15(7):1224–1229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.