3,573
Views
2
CrossRef citations to date
0
Altmetric
Review

Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application

Pages 365-375 | Received 10 Apr 2020, Accepted 20 May 2020, Published online: 26 Jul 2020

References

  • Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56(2):177–185.
  • Landegren U, Vänelid J, Hammond M, et al. Opportunities for sensitive plasma proteome analysis. Anal Chem. 2012;84(4): 1824–1830.
  • Borrebaeck CAK. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17(3):199–204.
  • Patil H, Saxena SG, Barrow CJ, et al. Chasing the personalized medicine dream through biomarker validation in colorectal cancer. Drug Discov Today. 2017;22(1):111–119.
  • Pritzker K. Biomarker imprecision in precision medicine. Expert Rev Mol Diagn. 2018;18(8):685–687.
  • Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213–221.
  • FDA-NIH Biomarker Working Group. BEST (Biomarkers, endpoints, and other tools) resource. 2016.
  • Romitti PA, Zhu Y, Puzhankara S, et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 2015;135(3):513–521.
  • Giegerich E, Stuntz M. Duchenne Muscular Dystrophy prevalence in the US: a novel incidence-based modeling approach using system dynamics. Value Health. 2019;22:S244–S244.
  • Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne Muscular Dystrophy mutations. Hum Mutat. 2015;36(4):395–402.
  • Falzarano MS, Scotton C, Passarelli C, et al. Duchenne Muscular Dystrophy: from diagnosis to therapy. Molecules. 2015;20(10):18168–18184.
  • Emery AEH. Muscular dystrophy into the new millennium. Neuromuscul Disord. 2002;12(4):343–349.
  • Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne Muscular Dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93.
  • Van Ruiten HJA, Marini Bettolo C, Cheetham T, et al. Why are some patients with Duchenne Muscular Dystrophy dying young: an analysis of causes of death in North East England. Eur J Paediatr Neurol. 2016;20(6):904–909.
  • Landfeldt E, Thompson R, Sejersen T, et al. Life expectancy at birth in Duchenne Muscular Dystrophy: a systematic review and meta-analysis. Eur J Epidemiol. 2020;71(3):304.
  • Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988;53(2):219–228.
  • Campbell KP. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995;80(5):675–679.
  • Le Rumeur E, Winder SJ, Hubert J-F. Dystrophin: more than just the sum of its parts. Biochim Biophys Acta. 2010;1804(9):1713–1722.
  • Gumerson JD, Research DMB. The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol. 2011;83:ID210797.
  • Feige P, Rudnicki MA. Muscle stem cells. Curr Biol. 2018;28(10):R589–R590.
  • Serrano AL, Mann CJ, Vidal B, et al. Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol. 2011;96:167–201.
  • Chang NC, Chevalier FP, Rudnicki MA. Satellite cells in muscular dystrophy - lost in polarity. Trends Mol Med. 2016;22(6):479–496.
  • Feige P, Brun CE, Ritso M, et al. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell. 2018;23(5):653–664.
  • Duguez S, Duddy W, Johnston H, et al. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell. Mol. Life Sci. 2013;70(12):2159–2174.
  • Straub V, Rafael JA, Chamberlain JS, et al. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol. 1997;139(2):375–385.
  • McArdle A, Edwards R, Jackson MJ. Time-course of changes in plasma-membrane permeability in the dystrophin-deficient Mdx mouse. Muscle Nerve. 1994;17(12):1378–1384.
  • Hodgetts S, Radley H, Davies M, et al. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with etanercept in mdx mice. Neuromuscul Disord. 2006;16(9–10):591–602.
  • Panovský R, Pešl M, Holeček T, et al. Cardiac profile of the Czech population of Duchenne Muscular Dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis. 2019;14(1):10.
  • Barp A, Bello L, Caumo L, et al. Muscle MRI and functional outcome measures in Becker muscular dystrophy. Sci Rep. 2017;7(1):16060.
  • Barnard AM, Willcocks RJ, Triplett WT, et al. MR biomarkers predict clinical function in Duchenne Muscular Dystrophy. Neurology. 2020;94(9):e897-e909.
  • Barnard AM, Willcocks RJ, Finanger EL, et al. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne Muscular Dystrophy. PLoS ONE. 2018;13(3):e0194283.
  • Willcocks RJ, Rooney WD, Triplett WT, et al. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large Duchenne Muscular Dystrophy cohort. Ann Neurol. 2016;79(4):535–547.
  • Warman Chardon J, Diaz-Manera J, Tasca G, et al. MYO-MRI diagnostic protocols in genetic myopathies. Neuromuscul Disord. 2019;29(11):827–841.
  • Hathout Y, Marathi RL, Rayavarapu S, et al. Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne Muscular Dystrophy patients. Hum Mol Genet. 2014;23(24):6458–6469.
  • Nadarajah VD, Mertens B, Dalebout H. Serum peptide profiles of Duchenne Muscular Dystrophy (DMD) patients evaluated by data handling strategies for high resolution content. J Proteom Bioinform [ Internet]. 2012;5(4):096.
  • Ayoglu B, Chaouch A, Lochmüller H, et al. Affinity proteomics within rare diseases: a BIO-NMD study for blood biomarkers of muscular dystrophies. EMBO Mol Med. 2014;6(7):918–936.
  • Cynthia Martin F, Hiller M, Spitali P, et al. Fibronectin is a serum biomarker for Duchenne Muscular Dystrophy. Proteomics Clin Appl. 2014;8(3–4):269–278.
  • Catapano F, Domingos J, Perry M, et al. Downregulation of miRNA-29, −23 and −21 in urine of Duchenne Muscular Dystrophy patients. Epigenomics. 2018;10(7):875–889.
  • Roberts TC, Coenen-Stass AML, Wood MJA. Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS ONE. 2014;9(2):e89237.
  • Roberts TC, Godfrey C, McClorey G, et al. Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res. 2013;41(20):9500–9513.
  • Hrach HC, Mangone M. miRNA profiling for early detection and treatment of Duchenne Muscular Dystrophy. Int J Mol Sci. 2019;20(18):4638.
  • Coenen-Stass AML, Wood MJA, Roberts TC. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med. 2017;23(11):989–1001.
  • Tsonaka R, Signorelli M, Sabir E, et al. Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne Muscular Dystrophy mouse models. Hum Mol Genet. 2020;29(5):745–755.
  • Boca SM, Nishida M, Harris M, et al. Discovery of metabolic biomarkers for Duchenne Muscular Dystrophy within a natural history study. PLoS ONE. 2016;11(4):e0153461.
  • Spitali P, Hettne K, Tsonaka R, et al. Cross-sectional serum metabolomic study of multiple forms of muscular dystrophy. J Cell Mol Med. 2018;22(4):2442–2448.
  • Szigyarto CA-K, Spitali P. Biomarkers of Duchenne Muscular Dystrophy: current findings. DNND. 2018;8:1–13.
  • Yasmineh WG, Ibrahim GA, Abbasnezhad M, et al. Isoenzyme distribution of creatine kinase and lactate dehydrogenase in serum and skeletal muscle in Duchenne Muscular Dystrophy, collagen disease, and other muscular disorders. Clin Chem. 1978;24(11):1985–1989.
  • Kiessling WR, Beckmann R. Serum levels of myoglobin and creatine kinase in Duchenne Muscular Dystrophy. Klin Wochenschr. 1981;59(7):347–348.
  • Pernice W, Guggolz MA, Guggolz M, et al. A mathematical analysis of creatine kinase activity in the course of Duchenne Muscular Dystrophy. Muscle Nerve. 1986;9(4):333–340.
  • Percy ME, Chang LS, Murphy EG, et al. Serum creatine kinase and pyruvate kinase in Duchenne Muscular Dystrophy carrier detection. Muscle Nerve. 1979;2(5):329–339.
  • Cardon MW. 50 years ago in the journal of pediatrics: an assessment of the creatine kinase test in the detection of carriers of Duchenne Muscular Dystrophy. J Pediatr. 2017;186:63.
  • Nakamura A, Kobayashi M, Kuraoka M, et al. Initial pulmonary respiration causes massive diaphragm damage and hyper-CKemia in Duchenne Muscular Dystrophy dog. Sci Rep. 2013;3(1):359.
  • Burch PM, Pogoryelova O, Palandra J, et al. Reduced serum myostatin concentrations associated with genetic muscle disease progression. J Neurol. 2017;264(3):541–553.
  • Oonk S, Spitali P, Hiller M, et al. Comparative mass spectrometric and immunoassay-based proteome analysis in serum of Duchenne Muscular Dystrophy patients. Proteomics Clin Appl. 2015;10(3):290–299.
  • Sun G, Haginoya K, Chiba Y, et al. Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci. 2010;297(1–2):19–28.
  • Zelikovich AS, Quattrocelli M, Salamone IM, et al. Moderate exercise improves function and increases adiponectin in the mdx mouse model of muscular dystrophy. Sci Rep. 2019;9(1):281.
  • Crowe KE, Shao G, Flanigan KM, et al. N-terminal α dystroglycan (αDG-N): a potential serum biomarker for Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2016;3(2):247–260.
  • Colussi CC, Banfi CC, Brioschi MM, et al. Proteomic profile of differentially expressed plasma proteins from dystrophic mice and following suberoylanilide hydroxamic acid treatment. Proteomics Clin Appl. 2009;4(1):71–83.
  • Guiraud S, Edwards B, Squire SE, et al. Identification of serum protein biomarkers for utrophin based DMD therapy. Sci Rep. 2017;7:43697.
  • Saito K, Koboyashi D, Komatsu M et al. A sensitive assay of tumor necrosis factor a in sera from Duchenne muscular dystrophy patients. Clin Chem 2000;46(10):1703e4
  • Füzéry AK, Levin J, Chan MM, et al. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10(1):13.
  • Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12(1):28–29.
  • McDonagh TA, Cunningham AD, Morrison CE, et al. Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population. Heart. 2001;86(1):21–26.
  • Dowling P, Murphy S, Zweyer M, et al. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn. 2019;19(8): 739–755.
  • Richterich R, Rosin S, Aebi U, et al. Progressive muscular dystrophy. V. The identification of the carrier state in the Duchenne type by serum creatine kinase determination. Am J Hum Genet. 1963;15(2):133–154.
  • Pearce MJ, Walton NJ, Pennington R. Serum enzyme studies in muscle disease. III. serum creatine kinase activity in relatives of patients with the Duchenne type of muscular dystrophy. J Neurol Neurosurg Psychiatry. 1964;27(3):181–185.
  • Mokuno K, Riku S, Matsuoka Y, et al. Serum muscle-specific enolase in progressive muscular dystrophy and other neuromuscular diseases. J Neurol Sci. 1984;63(3):345–352.
  • Kato K, Okagawa Y, Suzuki F, et al. Immunoassay of human-muscle enolase subunit in serum - a novel marker antigen for muscle diseases. Clin Chim Acta. 1983;131(1–2):75–85.
  • Carter ND, Heath R, Jeffery S, et al. Carbonic anhydrase III in Duchenne Muscular Dystrophy. Clin Chim Acta. 1983;133(2):201–208.
  • Mokuno K, Riku S, Matsuoka Y, et al. Serum carbonic anhydrase III in progressive muscular dystrophy. J Neurol Sci. 1985;67(2):223–228.
  • Ozawa E, Hagiwara Y, Yoshida M. Creatine kinase, cell membrane and Duchenne Muscular Dystrophy. Mol Cell Biochem. 1999;190(1–2):143–151.
  • Carberry S, Zweyer M, Swandulla D, et al. Profiling of age-related changes in the tibialis anterior muscle proteome of the mdx mouse model of dystrophinopathy. J Biomed Biotechnol. 2012;691641–691641:2011.
  • Guevel L, Lavoie JR, Perez-Iratxeta C, et al. Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res. 2011;10(5):2465–2478.
  • Rayavarapu S, Coley W, Cakir E, et al. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Mol Cell Proteomics. 2013;12(5):1061–1073.
  • Lewis C, Jockusch H, Ohlendieck K. Proteomic profiling of the dystrophin-deficient MDX heart reveals drastically altered levels of key metabolic and contractile proteins. J Biomed Biotechnol. 2010;2010(3):648501–648520.
  • Alagaratnam S, Mertens BJA, Dalebout JC, et al. Serum protein profiling in mice: identification of Factor XIIIa as a potential biomarker for muscular dystrophy. Proteomics. 2008;8(8):1552–1563.
  • Rouillon J, Poupiot J, Zocevic A, et al. molecular FAH, 2015. Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies. Hum Mol Genet. 2015;24(17):4916–4932.
  • Pietrowska M, Wlosowicz A, Gawin M, et al. MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. Adv Exp Med Biol. 2019;1073(5):57–76.
  • Kuhn E, Addona T, Keshishian H, et al. Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clinl Chem. 2009;55(6):1108–1117.
  • Murphy S, Dowling P, Zweyer M, et al. Proteomic profiling of mdx-4cv serum reveals highly elevated levels of the inflammation-induced plasma marker haptoglobin in muscular dystrophy. Int J Mol Med. 2017;39(6):1357–1370.
  • Granger J, Siddiqui J, Copeland S, et al. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics. 2005;5(18):4713–4718.
  • Seam N, Gonzales DA, Kern SJ, et al. Quality control of serum albumin depletion for proteomic analysis. Clin Chem. 2007;53(11):1915–1920.
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
  • Signorelli M, Ayoglu B, Johansson C, et al. Longitudinal serum biomarker screening identifies malate dehydrogenase 2 as candidate prognostic biomarker for Duchenne Muscular Dystrophy. J Cachexia, Sarcopenia Muscle. 2019;87:149.
  • Schwenk JM, Nilsson P. Antibody suspension bead arrays. Methods Mol Biol. 2011;723:29–36.
  • Breen EJ, Tan W, Khan A. The statistical value of raw fluorescence signal in luminex xMAP based multiplex immunoassays. Sci Rep. 2016;6(1):26996.
  • Algenäs C, Agaton C, Fagerberg L, et al. Antibody performance in western blot applications is context-dependent. Biotechnol J. 2014;9(3):435–445.
  • Bourbeillon J, Orchard S, Benhar I, et al. Minimum information about a protein affinity reagent (MIAPAR). Nat Biotech. 2010;28(7):650–653.
  • Uhlén M, Bandrowski A, Carr S, et al. A proposal for validation of antibodies. Nat Methods. 2016;13(10): 823.
  • Edfors F, Hober A, Linderbäck K, et al. Enhanced validation of antibodies for research applications. Nat Commun. 2018;9(1):4130.
  • Doerr A. Enhanced antibody validation. Nat Methods. 2018;15(12):1001.
  • Hathout Y, Brody E, Clemens PR, et al. Large-scale serum protein biomarker discovery in Duchenne Muscular Dystrophy. Proc Natl Acad Sci USA. 2015;112(23):7153–7158.
  • Voleti S, Olivieri L, Hamann K, et al. Troponin I Levels Correlate With Cardiac MR LGE and Native T1 Values in Duchenne Muscular Dystrophy Cardiomyopathy and Identify Early Disease Progression. Pediatr Cardiol. 2020;10.1007/s00246-020-02372-5.
  • Hathout Y, Liang C, Ogundele M, et al. Disease-specific and glucocorticoid-responsive serum biomarkers for Duchenne Muscular Dystrophy. Sci Rep. 2019;9(1):12167.
  • Anderson J, Seol H, Gordish-Dressman H, et al. Interleukin 1 receptor-like 1 protein (ST2) is a potential biomarker for cardiomyopathy in Duchenne Muscular Dystrophy. Pediatr Cardiol. 2017;38(8):1606–1612.
  • Parolo S, Marchetti L, Lauria M, et al. Combined use of protein biomarkers and network analysis unveils deregulated regulatory circuits in Duchenne Muscular Dystrophy. PLoS ONE. 2018;13(3):e0194225.
  • Zatz M, Rapaport D, Vainzof M, et al. Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. J Neurol Sci. 1991;102(2):190–196.
  • Mokuno K, Riku S, Sugimura K, et al. Serum creatine kinase isoenzymes in Duchenne Muscular Dystrophy determined by sensitive enzyme immunoassay methods. Muscle Nerve. 1987;10(5):459–463.
  • Baird MF, Graham SM, Baker JS, et al. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;960363:2012.
  • Magal M, Dumke CL, Urbiztondo ZG, et al. Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. J Sports Sci. 2010;28(3):257–266.
  • Kobayashi YM, Rader EP, Crawford RW, et al. Endpoint measures in the mdx mouse relevant for muscular dystrophy pre-clinical studies. Neuromuscul Disord. 2012;22(1):34–42.
  • Aartsma-Rus A, Ferlini A, Vroom E. Biomarkers and surrogate endpoints in Duchenne: meeting report. Neuromuscul Disord. 2014;24(8):743–745.
  • Timonen A, Lloyd-Puryear M, Neonatal DHJO. Duchenne Muscular Dystrophy newborn screening: evaluation of a new GSP® neonatal creatine kinase-MM Kit in a US and Danish population. Int J Neonatal Screen. 2019;5(27). DOI:10.3390/ijns5030027
  • Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne Muscular Dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049–1053.
  • Mendell JR, Shilling C, Leslie ND, et al. Evidence-based path to newborn screening for Duchenne Muscular Dystrophy. Ann Neurol. 2012;71(3):304–313.
  • Murphy S, Zweyer M, Mundegar RR, et al. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomic. 2018;15(3):277–291.
  • Spitali P, Hettne K, Tsonaka R, et al. Tracking disease progression non‐invasively in Duchenne and Becker muscular dystrophies. J Cachexia, Sarcopenia Muscle. 2018;80(4):706–726.
  • Ohta M, Itagaki Y, Itoh N, et al. Carbonic anhydrase III in serum in muscular dystrophy and other neurological disorders: relationship with creatine kinase. Clin Chem. 1991;37(1):36–39.
  • Cheeran D, Khan S, Khera R, et al. Predictors of death in adults with Duchenne Muscular Dystrophy–associated cardiomyopathy. J Am Heart Assoc. 2017;6(10):121.
  • Matsumura T, Saito T, Fujimura H, et al. Cardiac troponin I for accurate evaluation of cardiac status in myopathic patients. Brain Dev. 2007;29(8):496–501.
  • Townsend DW, Turner I, Yasuda S, et al. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. J Clin Invest. 2010;120(4):1140–1150.
  • Nadarajah VD, van Putten M, Chaouch A, et al. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne Muscular Dystrophy (DMD). Neuromuscul Disord. 2011;21(8):569–578.
  • Lourbakos A, Yau N, de Bruijn P, et al. Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Sci Rep. 2017;7(1):17888.
  • Soslow JH, Xu M, Slaughter JC, et al. The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in Duchenne Muscular Dystrophy cardiomyopathy. J Card Fail. 2019;25(4):259–267.
  • Zocevic A, Rouillon J, Wong B, et al. Evaluation of the serum matrix metalloproteinase-9 as a biomarker for monitoring disease progression in Duchenne Muscular Dystrophy. Neuromuscul Disord. 2015;25(5):444–446.
  • Spitali P, Aartsma-Rus A, T’ Hoen PAC. Response to: evaluation of the serum matrix metalloproteinase-9 as a biomarker for monitoring disease progression in Duchenne Muscular Dystrophy. Neuromuscul Disord. 2015;25(5):5.
  • Rodríguez-Cruz M, Cruz-Guzmán OR, Escobar RE, et al. Leptin and metabolic syndrome in patients with Duchenne/Becker muscular dystrophy. Acta Neurol Scand. 2016;133(4):253–260.
  • Cruz-Guzmán ODR, Rodríguez-Cruz M, Escobar-Cedillo RE. Systemic inflammation in Duchenne Muscular Dystrophy: association with muscle function and nutritional status. Biomed Res Int. 2015;2015(3):891972–891977.
  • John HA, Purdom IF. Elevated plasma levels of haptoglobin in Duchenne Muscular Dystrophy: electrophoretic variants in patients with a severe form of the disease. Electrophoresis. 1989;10(7):489–493.
  • Flanigan KM, Voit T, Rosales XQ, et al. Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne Muscular Dystrophy: results of a double-blind randomized clinical trial. Neuromuscul Disord. 2014;24(1):16–24.
  • de Carvalho SC, Matsumura CY, Santo Neto H, et al. Identification of plasma interleukins as biomarkers for deflazacort and omega-3 based Duchenne Muscular Dystrophy therapy. Cytokine. 2018;102:55–61.
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–226.
  • Viollet L, Gailey S, Thornton DJ, et al. Utility of cystatin C to monitor renal function in Duchenne Muscular Dystrophy. Muscle Nerve. 2009;40(3):438–442.
  • Strandberg K, Ayoglu B, Roos A, et al. Blood-derived biomarkers correlate with clinical progression in Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2020;7(3).
  • van der Burgt YEM. Protein biomarker discovery is still relevant and has entered a new phase. EBioMedicine. 2019;43:15.
  • Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. Epma J. 2013;4(1):7.
  • Wilson JL, Altman RB. Biomarkers: delivering on the expectation of molecularly driven, quantitative health. Exp Biol Med (Maywood). 2018;243(3):313–322.
  • Rodrigues M, Yokota T. An overview of recent advances and clinical applications of exon skipping and splice modulation for muscular dystrophy and various genetic diseases. Methods Mol Biol. 1828;31–55:2018.
  • Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50(4):477–487.
  • Mora M, Angelini C, Bignami F, et al. The EuroBioBank network: 10 years of hands-on experience of collaborative, transnational biobanking for rare diseases. Eur J Hum Genet. 2015;23(9):1116–1123.
  • Graham C, Dawkins H, Terry S, et al. Current trends in biobanking for rare diseases: a review. BSAM. 2014;2:49–61.
  • Gainotti S, Torreri P, Wang CM, et al. The RD-connect registry & biobank finder: a tool for sharing aggregated data and metadata among rare disease researchers. Eur J Hum Genet. 2018;26(5): 631–643.
  • Greco V, Piras C, Pieroni L, et al. Direct assessment of plasma/Serum sample quality for proteomics biomarker investigation. Methods Mol Biol. 2017;1619(3):3–21.
  • Menezes MP, North KN. Inherited neuromuscular disorders: pathway to diagnosis. J Paediatr Child Health. 2012;48(6):458–465.
  • Deenen JCW, Arnts H, van der Maarel SM, et al. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology. 2014;83(12):1056–1059.
  • Gudde AEEG, González-Barriga A, van den Broek WJAA, et al. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Hum Mol Genet. 2016;25(8):1648–1662.
  • Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep. 2014;9(5):1515–1532.
  • Bushby K. Report on the 12th ENMC sponsored international workshop–the “limb-girdle” muscular dystrophies. Neuromuscul Disord. 1992;2:3–5.
  • van der Kooi AJ, Barth PG, Busch HF, et al. The clinical spectrum of limb girdle muscular dystrophy. A survey in The Netherlands. Brain. 1996;119(Pt 5):1471–1480.
  • Dunnen Den JT, Grootscholten PM, Bakker E, et al. Topography of the Duchenne Muscular Dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet. 1989;45(6):835–847.
  • Becker PE, Kiener F. A new x-chromosomal muscular dystrophy. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1955;193(4):427–448.
  • Burch PM, Pogoryelova O, Goldstein R, et al. Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy. J Neuromuscul Dis. 2015;2(3):241–255.
  • Ibrahim GA, Zweber BA, Awad EA. Muscle and serum enzymes and isoenzymes in muscular-dystrophies. Arch Phys Med Rehab. 1981;62(6):265–269.
  • Coenen-Stass AML, McClorey G, Manzano R, et al. Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne Muscular Dystrophy by aptamer-based serum proteomics. Sci Rep. 2015;5(1):e38–11.
  • Aartsma-Rus A, Morgan J, Lonkar P, et al. Report of a TREAT-NMD/world duchenne organisation meeting on dystrophin quantification methodology. J Neuromuscul Dis. 2019;6(1):147–159.
  • Gaasterland CMW, van der Weide MCJ, Du Prie-Olthof MJ, et al. The patient’s view on rare disease trial design - a qualitative study. Orphanet J Rare Dis. 2019;14(1):31–39.
  • Verhaart IEC, T Hoen PAC, Roos M, et al. Meeting on data sharing for Duchenne 21–22 March 2019 Amsterdam, the Netherlands. Neuromuscul Disord. 2019;29(10):800–810.
  • Aartsma-Rus A, Ferlini A, McNally EM, et al. Workshop participants. 226th ENMC international workshop:: towards validated and qualified biomarkers for therapy development for Duchenne Muscular Dystrophy 20–22 January 2017, Heemskerk, The Netherlands. Neuromuscul Disord. 2018;28(1):77–86.
  • Zurriaga Ó, Martínez J, Corrochano V, et al. Rare disease registries and biobanks: A way forward. Arbor. 2018;194(789):469.