418
Views
8
CrossRef citations to date
0
Altmetric
Review

Progress regarding the context-of-use of tau as biomarker of Alzheimer’s disease and other neurodegenerative diseases

, , , , , , , , , , , & ORCID Icon show all
Pages 27-48 | Received 16 Dec 2020, Accepted 03 Feb 2021, Published online: 07 Mar 2021

References

  • Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol Internet]. 2013;12:609–622.
  • Rösler TW, Tayaranian Marvian A, Brendel M, et al. Four-repeat tauopathies [Internet]. Prog Neurobiol. Elsevier Ltd; 2019 [ cited 2020 Nov 22].
  • Höglinger GU, Respondek G, Kovacs GG. New classification of tauopathies. Rev Neurol (Paris). 2018;174:664–668.
  • Goedert M, Eisenberg DS, Crowther RA. Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci. 2017 ;40:189–210.
  • De L-RS, Moretto E, Schiavo G. Knockin’ on heaven’ s door: molecular mechanisms of neuronal tau uptake. J Neurochem. 2020;1–26.
  • Irwin DJ. Tauopathies as clinicopathological entities. Park Relat Disord Internet]. 2016;22:S29–S33.
  • Braak H, Zetterberg H, Del Tredici K, et al. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. 2013;126:631–641.
  • Elahi FM, Miller BL. A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol. 2017;13:457–476.
  • Sengupta U, Guerrero-Muñoz MJ, Castillo-Carranza DL, et al. Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol Psychiatry. 2015;78:672–683.
  • Henderson MX, Sengupta M, Trojanowski JQ, et al. Alzheimer’s disease tau is a prominent pathology in LRRK2 Parkinson’s disease. Acta Neuropathol Commun. 2019;7:1–16.
  • Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:257–262.
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–629.
  • Jack CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562.
  • Baldacci F, Mazzucchi S, Della Vecchia A, et al. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn. 2020; 20: 421–441.
  • Baldacci F, Lista S, Vergallo A, et al. A frontline defense against neurodegenerative diseases: the development of early disease detection methods. Expert Rev Mol Diagn. 2019;19:559–563.
  • Xia J, Broadhurst DI, Wilson M, et al. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 2013;9:280–299.
  • Kawarabayashi T, Nakamura T, Miyashita K, et al. Novel ELISAs to measure total and phosphorylated tau in cerebrospinal fluid. Neurosci Lett. 2020;722:134826.
  • Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;19:559–563.
  • Saijo E, Metrick MA, Koga S, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020;139:63–77.
  • Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14:639–652.
  • Del Prete E, Beatino MF, Campese N, et al. Fluid candidate biomarkers for Alzheimer’s disease: a precision medicine approach. 2020;10:221.
  • Park JC, Han SH, Yi D, et al. Plasma tau/amyloid-β 1–42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain. 2019;142:771–786.
  • Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–433.
  • Chen Z, Mengel D, Keshavan A, et al. Learnings about the complexity of extracellular tau aid development of a blood-based screen for Alzheimer’s disease. Alzheimer’s Dement. 2019;15: 487–496.
  • Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status. JAMA Neurol. 2019 ;76:1060–1069.
  • Mielke MM, Hagen CE, Xu J, et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer’s Dement. 2018;14:989–997.
  • Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med. 2020;26:379–386.
  • Thijssen EH, La Joie R, Wolf A, et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med. 2020 ;26:387–397.
  • Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. J Am Med Assoc. 2020;324:772.
  • Mattsson-Carlgren N, Janelidze S, Bateman R, et al. Soluble P-tau217 reflects both amyloid and tau pathology in the human brain and mediates the association of amyloid with neocortical tau. Brain. Internet]. 2020 [cited 2020 November 22];143:3234–3241.
  • Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30:19–34.
  • Barthélemy NR, Horie K, Sato C, et al. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer’s disease. J Exp Med. 2020;217.
  • Chieh JJ, Yang SY, Horng HE, et al. Immunomagnetic reduction assay using high-Tc superconducting-quantum-interference-device-based magnetosusceptometry. J Appl Phys. 2010 ;107:074903.
  • Yang SY, Chiu MJ, Chen TF, et al. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer’s disease. Neurol Ther. 2017;6:37–56.
  • Lue LF, Sabbagh MN, Chiu MJ, et al. Plasma levels of Aβ42 and tau identified probable Alzheimer’s dementia: findings in two cohorts. Front Aging Neurosci. 2017;9.
  • Lin CH, Yang SY, Horng HE, et al. Plasma biomarkers differentiate Parkinson’s disease from atypical parkinsonism syndromes. Front Aging Neurosci. 2018 ;10.
  • Fan LY, Tzen KY, Chen YF, et al. The Relation Between Brain Amyloid Deposition, Cortical Atrophy, and Plasma Biomarkers in Amnesic Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci. 2018;10:175
  • Yang CC, Chiu MJ, Chen TF, et al. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. J Alzheimer’s Dis. 2018 ;61:1323–1332.
  • Manca M, Kraus A. Defining the protein seeds of neurodegeneration using real-time quaking-induced conversion assays. Biomolecules. 2020;10:1233.
  • Saijo E, Metrick MA, Shunsuke II, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol.2020;139:63–77.
  • D’abramo C, D’adamio L, Giliberto L. Significance of blood and cerebrospinal fluid biomarkers for alzheimer’s disease: sensitivity, specificity and potential for clinical use. J Pers Med. 2020 ;10:1–39.
  • Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016 ;15:673–684.
  • Zetterberg H, Wilson D, Andreasson U, et al. Plasma tau levels in Alzheimer’s disease. Alzheimer’s Res Ther.2013;5:9.
  • Dage JL, Wennberg AMV, Airey DC, et al. Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer’s Dement. 2016 12:1226–1234.
  • Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology. 2016;87:1827–1835.
  • Müller S, Preische O, Göpfert JC, et al. Tau plasma levels in subjective cognitive decline: results from the DELCODE study. Sci Rep. 2017;7.
  • Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol. 2019 ;76:598–606.
  • Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo clinic study on aging. JAMA Neurol. 2017 ;74:1073–1080.
  • Cavedo E, Lista S, Houot M, et al. Plasma tau correlates with basal forebrain atrophy rates in people at risk for Alzheimer disease. Neurology. 2020 ;94:e30–e41.
  • Chen J, Wojta K, Yokoyama JS, et al. Genome-wide association study identifies MAPT locus influencing human plasma tau levels. Neurology. 2017;88:669–676.
  • Quinn JP, Corbett NJ, Kellett KAB, et al. Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers.J Alzheimers Dis 2018 ;63:13-33.13–33.
  • Mattsson-Carlgren N, Palmqvist S, Blennow K, et al. Increasing the reproducibility of fluid biomarker studies in neurodegenerative studies. Nat Commun. 2020;11:1–11.
  • Barthélemy NR, Li Y, Joseph-Mathurin N, et al. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med. 2020;26:398–407.
  • Suárez‐Calvet M, Karikari TK, Ashton NJ, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med. 2020;12:e129221.
  • Forrest SL, Kril JJ, Halliday GM. Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathol. 2019;138:705–727.
  • Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.
  • Arai H, Morikawa Y, Higuchi M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology.Biochem Biophys Res Commun. 1997;264:262–264.
  • Schoonenboom NSM, Reesink FE, Verwey NA, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology. 2012;78:47–54.
  • Bech S, Hjermind LE, Salvesen L, et al. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes. Park Relat Disord. . 2012;18:69–72.
  • Hall S, Öhrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or Parkinsonian disorders. Arch Neurol. 2012;69:1445–1452.
  • Magdalinou NK, Paterson RW, Schott JM, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86:1240–1247.
  • Schirinzi T, Maria G, Di G, et al. Clinical value of CSF amyloid-beta-42 and tau proteins in progressive supranuclear palsy. J Neural Transm. 2018;125:1373–1379.
  • Jeppsson A, Wikkelsö C, Blennow K, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. Journal of Neurology, Neurosurgery, and Psychiatry. 2019;90:1117–1123.
  • Urakami K, Mori M, Wada K, et al. A comparison of tau protein in cerebrospinal fluid between corticobasal degeneration and progressive supranuclear palsy. Neuroscience Letters. 1999;259:127–129.
  • Urakami K, Wada K, Arai H, et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. Journal of the Neurological Sciences. 2001;183:95–98.
  • Borroni B, Gardoni F, Parnetti L, et al. Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiology of Aging. 2009;30:34–40.
  • Aerts MB, Esselink R, Bloem BR, et al. Cerebrospinal fluid tau and phosphorylated tau protein are elevated in corticobasal syndrome. Mov Disord. 2011. DOI:10.1002/mds.23341.
  • Boeve BF, Lang AE, Litvan I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol. 2003;54:S15-S19.
  • Barthélemy NR, Gabelle A, Hirtz C, et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J Alzheimer’s Dis. 2016;51:1033–1043.
  • Borroni B, Malinverno M, Gardoni F, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology. 2008;71:1796–1803.
  • Kuiperij HB, Verbeek MM, Borroni B. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology. 2011;76:1443.
  • Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86:244–250.
  • Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol.2020;19:422–433.
  • Constantinescu R, Axelsson M, Eriksson B. Cerebrospinal fluid neurofilament light and tau protein as mortality biomarkers in parkinsonism. Acta Neurologica Scandinavica. 2019;140:147–156.
  • Rojas JC, Bang J, Lobach IV, et al. CSF neuro fi lament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 2018; 90(4): e273–e281.
  • Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672–1682.
  • Irwin DJ, Grossman M, Weintraub D, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16:55.
  • Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–2477.
  • Murley AG, Coyle-Gilchrist I, Rouse MA, et al. Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain. 2020;143:1555–1571.
  • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–1014.
  • Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Prim. 2017;3: 17085.
  • van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390:2084–2098.
  • Strong MJ, Abrahams S, Goldstein LH, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017;18:153–174.
  • Chiò A, Moglia C, Canosa A, et al. Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology. 2019;93:e984-e994.
  • De Silva D, Hsieh S, Caga J, et al. Motor function and behaviour across the ALS-FTD spectrum. Acta Neurol Scand. 2016;133:367–372.
  • Burrell JR, Kiernan MC, Vucic S, et al. Motor Neuron dysfunction in frontotemporal dementia. Brain. 2011. DOI:10.1093/brain/awr195.
  • Bourbouli M, Rentzos M, Bougea A, et al. Cerebrospinal fluid TAR DNA-binding protein 43 combined with tau proteins as a candidate biomarker for amyotrophic lateral sclerosis and frontotemporal dementia spectrum disorders. Dement Geriatr Cognit Disord. 2017;44:144–152.
  • Foiani MS, Cicognola C, Ermann N, et al. Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest. J Neurol Neurosurg Psychiatry. 2019;90:740–746.
  • Ye LQ, Li XY, Bin ZY, et al. The discriminative capacity of CSF β-amyloid 42 and tau in neurodegenerative diseases in the Chinese population. J Neurol Sci. 2020. DOI:10.1016/j.jns.2020.116756.
  • Borroni B, Benussi A, Archetti S, et al. Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener. 2015. DOI:10.3109/21678421.2014.971812.
  • Kämälaïnen A, Herukka SK, Hartikainen P, et al. Cerebrospinal fluid biomarkers for Alzheimer’s disease in patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis with the C9ORF72 repeat expansion. Dement Geriatr Cogn Disord. 2015. DOI:10.1159/000371704.
  • Abu-Rumeileh S, Mometto N, Bartoletti-Stella A, et al. Cerebrospinal fluid biomarkers in patients with frontotemporal dementia spectrum: A single-center study. J Alzheimer’s Dis. 2018. DOI:10.3233/JAD-180409.
  • Paterson RW, Slattery CF, Poole T, et al. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimer’s Res Ther. 2018. DOI:10.1186/s13195-018-0361-3.
  • Wilke C, Deuschle C, Rattay TW, et al. Total tau is increased, but phosphorylated tau not decreased, in cerebrospinal fluid in amyotrophic lateral sclerosis. Neurobiol Aging. 2015;36:1072–1074.
  • Scarafino A, D’Errico E, Introna A, et al. Diagnostic and prognostic power of CSF tau in amyotrophic lateral sclerosis. J Neurol. 2018;265:2353–2362.
  • Abu-Rumeileh S, Vacchiano V, Zenesini C, et al. Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J Neurol. 2020. DOI:10.1007/s00415-020-09761-z.
  • Schreiber S, Spotorno N, Schreiber F, et al. Significance of CSF NfL and tau in ALS. J Neurol. 2018. DOI:10.1007/s00415-018-9043-0.
  • Lanznaster D, Hergesheimer RC, Bakkouche SE, et al. Aβ1-42 and tau as potential biomarkers for diagnosis and prognosis of amyotrophic lateral sclerosis. Int J Mol Sci. 2020. DOI:10.3390/ijms21082911.
  • Vergallo A, Carlesi C, Pagni C, et al. A single center study: aβ42/p-Tau181 CSF ratio to discriminate AD from FTD in clinical setting. Neurol Sci. 2017;38:1791–1797.
  • Meeter LHH, Vijverberg EG, Del Campo M, et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology. 2018. doi: 10.1212/WNL.0000000000005261.
  • Kuiperij HB, Versleijen AAM, Beenes M, et al. Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J Alzheimer’s Dis. 2017; 55:585–595.
  • Spillantini MG, Crowther RA, Jakes R, et al. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A. 1998;95:6469–6473.
  • Arima K, Hirai S, Sunohara N, et al. Cellular co-localization of phosphorylated tau- and NACP/α-synuclein- epitopes in Lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res. 1999;843:53–61.
  • Wood SJ, Wypych J, Steavenson S, et al. α-Synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson’s disease. J Biol Chem.1999;274:19509–19512.
  • Friedhoff P, Von Bergen M, Mandelkow EM, et al. Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta - Mol Basis Dis. Elsevier 2000;1502: 122–132.
  • Giasson BI, Forman MS, Higuchi M, et al. Initiation and synergistic fibrillization of tau and alpha-synuctein. Science. 2003;300:636–640.
  • Souza JM, Giasson BI, Lee VMY, et al. Chaperone-like activity of synucleins. FEBS Lett. Internet]. 2000 [cited 2020 October 19];474:116–119.
  • Daniele S, Frosini D, Pietrobono D, et al. α-synuclein heterocomplexes with β-amyloid are increased in red blood cells of Parkinson’s disease patients and correlate with disease severity. Front Mol Neurosci. Internet]. 2018 [cited 2020 October 10];11.
  • Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23:1–13.
  • Kang JH, Irwin DJ, Chen-Plotkin AS, et al. Association of cerebrospinal fluid β-amyloid 1–42, t-tau, p-tau 181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 2013 ;70:1277–1287.
  • Mollenhauer B, Caspell-Garcia CJ, Coffey CS, et al. Longitudinal CSF biomarkers in patients with early Parkinson disease and healthy controls. Neurology. 2017;89:1959–1969.
  • Laurens B, Constantinescu R, Freeman R, et al. Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative. Neurobiol Dis. 2015; 80:29–41.
  • Delgado-Alvarado M, Gago B, Gorostidi A, et al. Tau/α-synuclein ratio and inflammatory proteins in Parkinson’s disease: an exploratory study. Mov Disord. 2017;32:1066–1073.
  • Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson’s disease. Brain Pathol. 2010;20:633–639.;
  • Parnetti L, Tiraboschi P, Lanari A, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy Bodies. Biol Psychiatry.2008;64:850–855.
  • Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid β 1–42 predicts cognitive decline in Parkinson disease. Neurology. 2010;75:1055–1061.
  • Irwin DJ, Grossman M, Weintraub D, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017;16:55.
  • Mukaetova-Ladinska EB, Monteith R, Perry EK. Cerebrospinal fluid biomarkers for dementia with Lewy Bodies Int J Alzheimers Dis. 2010;2010:1–17.
  • Irwin DJ, Xie SX, Coughlin D, et al. CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology. 2018;90:e1038–e1046.
  • Parnetti L, Lanari A, Amici S, et al. CSF phosphorylated tau is a possible marker for discriminating Alzheimer’s disease from dementia with Lewy bodies. Neurol Sci. 2001 ;22:77–78.
  • Schade S, Mollenhauer B. Biomarkers in biological fluids for dementia with Lewy bodies:72 6.
  • Coughlin DG, Xie SX, Liang M, et al. Cognitive and pathological influences of tau pathology in Lewy Body disorders abstract HHS public access. Ann Neurol. 2019;85:259–271.
  • van der Zande JJ, Steenwijk MD, Ten Kate M, et al. Gray matter atrophy in dementia with Lewy bodies with and without concomitant Alzheimer’s disease pathology. Neurobiol Aging. Internet]. 2018 [cited 2020 October 16];71:171–178.
  • Abdelnour C, Ferreira D, Oppedal K, et al. The combined effect of amyloid-β and tau biomarkers on brain atrophy in dementia with Lewy bodies. NeuroImage Clin. Internet]. 2020;27: 102333. [cited 2020 October 16.
  • Palma JA, Norcliffe-Kaufmann L, Kaufmann H. Diagnosis of multiple system atrophy. Auton Neurosci Basic Clin; 2018;211: 15–25.
  • Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:1375–1376.
  • Seino Y, Nakamura T, Kawarabayashi T, et al. Cerebrospinal fluid and plasma biomarkers in neurodegenerative diseases. J Alzheimer’s Dis. 2019;68:395–404.
  • Herbert MK, Eeftens JM, Aerts MB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Park Relat Disord. 2014;20:112–115.
  • Shi M, Bradner J, Hancock AM, et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol. 2011;69:570–580.
  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, et al. α-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011;10:230–240.
  • Constantinides VC, Paraskevas GP, Emmanouilidou E, et al. CSF biomarkers β-amyloid, tau proteins and a-synuclein in the differential diagnosis of Parkinson-plus syndromes. J Neurol Sci. 2017;382:91–95.
  • Barbour R, Kling K, Anderson JP, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5:55–59.
  • Wang X, Yu S, Li F, et al. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci Lett. 2015;599:115–119.
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014; 13:614–629.
  • Agdeppa ED, Kepe V, Liu J, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001. DOI:10.1523/JNEUROSCI.21-24-j0004.2001.
  • Thompson PW, Ye L, Morgenstern JL, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem. 2009. DOI:10.1111/j.1471-4159.2009.05996.x.
  • Villemagne VL, Okamura N. In vivo tau imaging: obstacles and progress. Alzheimer’s Dement. 2014. DOI:10.1016/j.jalz.2014.04.013
  • Villemagne VL, Furumoto S, Fodero-Tavoletti M, et al. The challenges of tau imaging. Future Neurol. 2012;7:409–421.
  • Lemoine L, Saint-Aubert L, Nennesmo I, et al. Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by 3 H-THK5117 and 3 H-deprenyl autoradiography. Sci Rep. 2017. DOI:10.1038/srep45496.
  • Vermeiren C, Motte P, Viot D, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases. Mov Disord. 2018. DOI:10.1002/mds.27271.
  • Brosch JR, Farlow MR, Risacher SL, et al. Tau imaging in Alzheimer’s disease diagnosis and clinical trials. Neurotherapeutics. 2017;14:62–68.
  • Perez-Soriano A, Arena JE, Dinelle K, et al. PBB3 imaging in Parkinsonian disorders: evidence for binding to tau and other proteins. Mov Disord. 2017. DOI:10.1002/mds.27029.
  • Lois C, Gonzalez I, Johnson KA, et al. PET imaging of tau protein targets: a methodology perspective. Brain Imaging Behav. 2019;13:333–344.
  • Barthel H. First Tau PET tracer approved: toward accurate in vivo diagnosis of Alzheimer disease. J Nucl Med. 2020;61:1409–1410.
  • Braak H, Thal DR, Ghebremedhin E, et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–969.
  • Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci. 1970. DOI:10.1016/0022-510X(70)90063-8
  • Xia CF, Arteaga J, Chen G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer’s Dement. 2013; 9:666–676.
  • Chien DT, Szardenings AK, Bahri S, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimer’s Dis. 2014; doi: 10.1016/j.jalz.2012.11.008
  • Fleisher AS, Pontecorvo MJ, Devous MD, et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020. DOI:10.1001/jamaneurol.2020.0528.
  • Ossenkoppele R, Rabinovici GD, Smith R, et al. Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. J Am Med Assoc. 2018. DOI:10.1001/jama.2018.12917.
  • Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.
  • Schöll M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016. DOI:10.1016/j.neuron.2016.01.028.
  • Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016. DOI:10.1002/ana.24546.
  • Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016. DOI:10.1007/s00259-016-3363-z.
  • Cho H, Choi JY, Hwang MS, et al. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016. DOI:10.1002/ana.24711.
  • Cho H, Choi JY, Hwang MS, et al. Tau PET in Alzheimer disease and mild cognitive impairment. Neurology. 2016. DOI:10.1212/WNL.0000000000002892.
  • Pontecorvo MJ, Devous MD, Navitsky M, et al. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain. 2017. DOI:10.1093/brain/aww334.
  • Marshall GA, Fairbanks LA, Tekin S, et al. Early-onset Alzheimer’s disease is associated with greater pathologic burden. J Geriatr Psychiatry Neurol. 2007. DOI:10.1177/0891988706297086.
  • Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84:608–622.
  • Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of Tau pathology in patients with Alzheimer’s disease using [18F] THK-5117 positron emission tomography. PLoS One. 2015. DOI:10.1371/journal.pone.0140311.
  • Jack CR, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018. DOI:10.1093/brain/awy059.
  • Chiotis K, Saint-Aubert L, Rodriguez-Vieitez E, et al. Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Mol Psychiatry. 2018. DOI:10.1038/mp.2017.108.
  • Cho H, Choi JY, Lee HS, et al. Progressive tau accumulation in Alzheimer disease: 2-year follow-up study. J Nucl Med. 2019; 60:1611–1621.
  • Hansson O, Mormino EC. Is longitudinal tau PET ready for use in Alzheimer’s disease clinical trials? Brain. 2018;141:1241–1244.
  • Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016. DOI:10.1093/brain/aww027.
  • Dronse J, Fliessbach K, Bischof GN, et al. In vivo patterns of tau pathology, Amyloid-β burden, and Neuronal dysfunction in clinical variants of Alzheimer’s disease. J Alzheimer’s Dis. 2017;55:465–471.
  • Ossenkoppele R, Schonhaut DR, Baker SL, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 2015. DOI:10.1002/ana.24321.
  • Phillips JS, Das SR, McMillan CT, et al. Tau PET imaging predicts cognition in atypical variants of Alzheimer’s disease. Hum Brain Mapp. 2018. DOI:10.1002/hbm.23874.
  • Okamura N, Harada R, Ishiki A, et al. The development and validation of tau PET tracers: current status and future directions. Clin Transl Imaging. 2018;6:305–316.
  • Leuzy A, Smith R, Ossenkoppele R, et al. Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol. 2020;77:955–965.
  • Wong DF, Comley RA, Kuwabara H, et al. Characterization of 3 novel tau radiopharmaceuticals,11C-RO-963,11C-RO-643, and18F-RO-948, in healthy controls and in Alzheimer subjects. J Nucl Med. 2018. DOI:10.2967/jnumed.118.209916.
  • Smith R, Schöll M, Leuzy A, et al. Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948. Eur J Nucl Med Mol Imaging. 2020. DOI:10.1007/s00259-019-04496-0.
  • Stephens A, Seibyl J, Mueller A, et al. IC-P-220: clinical update: 18 F-PI-2620, a next generation tau pet agent evaluated in subjects with Alzheimer’s Disease And Progressive Supranuclear Palsy. Alzheimer’s Dement. 2018. DOI:10.1016/j.jalz.2018.06.2287.
  • Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18 F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med. 2019. DOI:10.2967/jnumed.118.209650.
  • Lohith TG, Bennacef I, Vandenberghe R, et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18 F-MK-6240, a PET tracer targeting neurofibrillary tangles. J Nucl Med. 2019. DOI:10.2967/jnumed.118.208215.
  • Pascoal TA, Shin M, Kang MS, et al. In vivo quantification of neurofibrillary tangles with [18 F]MK-6240. Alzheimer’s Res Ther. 2018;10:74.
  • Williams DR, Holton JL, Strand C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain. 2007. DOI:10.1093/brain/awm104.
  • Forman MS, Zhukareva V, Bergeron C, et al. Signature tau neuropathology in gray and white matter of corticobasal degeneration. Am J Pathol. 2002. DOI:10.1016/S0002-9440(10)61154-6.
  • Kouri N, Murray ME, Hassan A, et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain. 2011. DOI:10.1093/brain/awr234.
  • Ling H, Kovacs GG, Vonsattel JPG, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016. DOI:10.1093/brain/aww256.
  • Saeed U, Lang AE, Masellis M. Neuroimaging advances in Parkinson’s disease and atypical parkinsonian syndromes. Front Neurol. 2020;11:572976.
  • Ishiki A, Harada R, Okamura N, et al. Tau imaging with [18F]THK-5351 in progressive supranuclear palsy. Eur J Neurol. 2017. DOI:10.1111/ene.13164.
  • Smith R, Schain M, Nilsson C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord. 2017;32:108–114.
  • Cho H, Choi JY, Hwang MS, et al. Subcortical 18F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord. 2017. DOI:10.1002/mds.26844.
  • Whitwell JL, Lowe VJ, Tosakulwong N, et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord. 2017. DOI:10.1002/mds.26834.
  • Passamonti L, Rodríguez PV, Hong YT, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017. DOI:10.1093/brain/aww340.
  • Hammes J, Bischof GN, Giehl K, et al. Elevated in vivo [18F]-AV-1451 uptake in a patient with progressive supranuclear palsy. Mov Disord. 2017;32:170–171.
  • Coakeley S, Cho SS, Koshimori Y, et al. Positron emission tomography imaging of tau pathology in progressive supranuclear palsy. J Cereb Blood Flow Metab. 2017. DOI:10.1177/0271678X16683695.
  • Kepe V, Bordelon Y, Boxer A, et al. PET imaging of neuropathology in tauopathies: progressive supranuclear palsy. J Alzheimer’s Dis. 2013. DOI:10.3233/JAD-130032.
  • Schonhaut DR, McMillan CT, Spina S, et al. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol. 2017. DOI:10.1002/ana.25060.
  • Brendel M, Schönecker S, Höglinger G, et al. [18F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front Aging Neurosci. 2018. DOI:10.3389/fnagi.2017.00440.
  • Hsu JL, Chen SH, Hsiao IT, et al. 18F-THK5351 PET imaging in patients with progressive supranuclear palsy: associations with core domains and diagnostic certainty. Sci Rep. 2020. DOI:10.1038/s41598-020-76339-0.
  • Whitwell JL, Tosakulwong N, Botha H, et al. Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants. Neuroimage Clin. 2020. DOI:10.1016/j.nicl.2019.102152.
  • Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013. DOI:10.1016/j.neuron.2013.07.037.
  • Kikuchi A, Okamura N, Hasegawa T, et al. In vivo visualization of tau deposits in corticobasal syndrome by 18 F-THK5351 PET. Neurology. 2016. DOI:10.1212/WNL.0000000000003375.
  • McMillan CT, Irwin DJ, Nasrallah I, et al. Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016;132:935–937.
  • Ali F, Whitwell JL, Martin PR, et al. [18F] AV-1451 uptake in corticobasal syndrome: the influence of beta-amyloid and clinical presentation. J Neurol. 2018. DOI:10.1007/s00415-018-8815-x.
  • Tsai RM, Bejanin A, Lesman-Segev O, et al. 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes. Alzheimer’s Res Ther. 2019. DOI:10.1186/s13195-019-0470-7.
  • Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol Commun. 2016. DOI:10.1186/s40478-016-0315-6.
  • Brendel M, Barthel H, Van Eimeren T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol. 2020. DOI:10.1001/jamaneurol.2020.2526.
  • Kroth H, Oden F, Molette J, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur J Nucl Med Mol Imaging. 2019. doi: 10.1007/s00259-019-04397-2.
  • Molinuevo JL, Ayton S, Batrla R, et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018. doi: 10.1007/s00401-018-1932-x.
  • Hampel H, Goetzl EJ, Kapogiannis D, et al. Biomarker-drug and liquid biopsy co-development for disease staging and targeted therapy: cornerstones for Alzheimer’s precision medicine and pharmacology. Front Pharmacol. 2019;10:1–10.
  • Thijssen EH, Rabinovici GD. Rapid progress toward reliable blood tests for Alzheimer disease. JAMA Neurol. 2020. doi: 10.1001/jamaneurol.2020.4200
  • Janelidze S, Stomrud E, Smith R, et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat Commun. 2020 [cited 2020 December 5];11.
  • Janelidze S, Berron D, Smith R, et al. Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease. JAMA Neurol. 2020. doi: 10.1001/jamaneurol.2020.4201
  • Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol. Internet]. 2003 [cited 2020 October 10];60:1696–1702.
  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, et al. α-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011 ;10: 230–240.
  • Hampel H, Lista S, Neri C, et al. Time for the systems-level integration of aging: resilience enhancing strategies to prevent Alzheimer’s disease. Prog Neurobiol. 2019;181:101662.
  • Toschi N, Lista S, Baldacci F, et al. Biomarker-guided clustering of Alzheimer’s disease clinical syndromes. Neurobiol Aging. 2019;83:42–53.
  • Hampel H, Caraci F, Cuello AC, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.