295
Views
9
CrossRef citations to date
0
Altmetric
Review

Insights and clinical potential of proteomics in understanding spermatogenesis

, ORCID Icon, , &
Pages 13-25 | Received 02 Jan 2021, Accepted 09 Feb 2021, Published online: 04 Mar 2021

References

  • Yates JR 3rd. Mass spectrometry as an emerging tool for systems biology. Biotechniques. 2004;36(6):917–919.
  • Gregorich ZR, Ge Y. Top-down proteomics in health and disease: challenges and opportunities. Proteomics. 2014;14(10):1195–1210.
  • Harris ID, Fronczak C, Roth L, et al. Fertility and the aging male. Rev Urol. 2011;13(4):e184–90.
  • Martin-du Pan RC, Campana A. Physiopathology of spermatogenic arrest. Fertil Steril. 1993;60(6):937–946.
  • Schlegel PN. Causes of azoospermia and their management. Reprod Fertil Dev. 2004;16(5):561–572.
  • Starita-Geribaldi M, Poggioli S, Zucchini M, et al. Mapping of seminal plasma proteins by two-dimensional gel electrophoresis in men with normal and impaired spermatogenesis. Mol Hum Reprod. 2001;7(8):715–722.
  • Huo R, He Y, Zhao C, et al. Identification of human spermatogenesis-related proteins by comparative proteomic analysis: a preliminary study. Fertil Steril. 2008;90(4):1109–1118.
  • Paz M, Morin M, Del Mazo J. Proteome profile changes during mouse testis development. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(4):404–415.
  • Fox JG, Barthold S, Davisson M, et al. The mouse in biomedical research: normative biology, husbandry, and models. Vol. 3. Burlington, USA: Elsevier; 2006.
  • Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–248.
  • Fulcher KD, Welch JE, Klapper DG, et al. Identification of a unique mu-class glutathione S-transferase in mouse spermatogenic cells. Mol Reprod Dev. 1995;42(4):415–424.
  • Sasagawa I, Matsuki S, Suzuki Y, et al. Possible involvement of the membrane-bound form of peroxiredoxin 4 in acrosome formation during spermiogenesis of rats. Eur J Biochem. 2001;268(10):3053–3061.
  • Frenette G, Lessard C, Sullivan R. Polyol pathway along the bovine epididymis. Mol Reprod Dev. 2004;69(4):448–456.
  • Travert C, Fofana M, Carreau S, et al. Rat Leydig cells use apolipoprotein E depleted high density lipoprotein to regulate testosterone production. Mol Cell Biochem. 2000;213(1–2):51–59.
  • Rato L, Alves MG, Socorro S, et al. Metabolic regulation is important for spermatogenesis. Nat Rev Urol. 2012;9(6):330–338.
  • Xiong W, Wang H, Wu H, et al. Apoptotic spermatogenic cells can be energy sources for Sertoli cells. Reproduction. 2009;137(3):469–479.
  • Nakanishi Y, Shiratsuchi A. Phagocytic removal of apoptotic spermatogenic cells by Sertoli cells: mechanisms and consequences. Biol Pharm Bull. 2004;27(1):13–16.
  • Kumaresan A, Bujarbaruah KM, Karunakaran M, et al. Assessment of early sexual maturity in nondescript local pigs of northeast India: testicular development, spermiogram and in vivo pregnancy. Livestock Sci. 2008;116(1):342–347.
  • Huang SY, Lin JH, Teng SH, et al. Differential expression of porcine testis proteins during postnatal development. Anim Reprod Sci. 2011;123(3–4):221–233.
  • Chiang Y, Rizzino A, Sibenaller ZA, et al. Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem. 1999;199(1–2):139–147.
  • Cui Y, Zhu H, Zhu Y, et al. Proteomic analysis of testis biopsies in men treated with injectable testosterone undecanoate alone or in combination with oral levonorgestrel as potential male contraceptive. J Proteome Res. 2008;7(9):3984–3993.
  • Xiao X, Yang WX. Actin-based dynamics during spermatogenesis and its significance. J Zhejiang Univ Sci B. 2007;8(7):498–506.
  • Kamma H, Horiguchi H, Wan L, et al. Molecular characterization of the hnRNP A2/B1 proteins: tissue-specific expression and novel isoforms. Exp Cell Res. 1999;246(2):399–411.
  • Huang XY, Guo XJ, Shen J, et al. Construction of a proteome profile and functional analysis of the proteins involved in the initiation of mouse spermatogenesis. J Proteome Res. 2008;7(8):3435–3446.
  • Yu Y, Xi Q, Wang R, et al. Heterogenicity of testicular histopathology and tubules as a predictor of successful microdissection testicular sperm extraction in men with nonobstructive azoospermia. Medicine (Baltimore). 2018;97(22):e10914.
  • Luk AC, Chan WY, Rennert OM, et al. Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. Reproduction. 2014;147(5):R131–41.
  • O’Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis. 2014;4(2):e979623.
  • Rolland AD, Evrard B, Guitton N, et al. Two-dimensional fluorescence difference gel electrophoresis analysis of spermatogenesis in the rat. J Proteome Res. 2007;6(2):683–697.
  • Zhang S, Hu Z, Lan Y, et al. Prognostic significance of survival-associated alternative splicing events in gastric cancer. Aging (Albany NY). 2020;12(21):21923–21941.
  • Robida MD, Singh R. Drosophila polypyrimidine-tract binding protein (PTB) functions specifically in the male germline. Embo J. 2003;22(12):2924–2933.
  • Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a Mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102(1):43–53.
  • Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55(4):548–573.
  • Govin J, Gaucher J, Ferro M, et al. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome. Mol Hum Reprod. 2012;18(1):1–13.
  • Einck L, Bustin M. The intracellular distribution and function of the high mobility group chromosomal proteins. Exp Cell Res. 1985;156(2):295–310.
  • Rathke C, Baarends WM, Awe S, et al. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014;1839(3):155–168.
  • Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 2016;151(5):R55–70.
  • Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin. 2014;7(1):2.
  • Wang T, Gao H, Li W, et al. Essential role of histone replacement and modifications in male fertility. Front Genet. 2019;10:962.
  • Schon SB, Luense LJ, Wang X, et al. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet. 2019;36(2):267–275.
  • Dix DJ, Allen JW, Collins BW, et al. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A. 1996;93(8):3264–3268.
  • Govin J, Caron C, Escoffier E, et al. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J Biol Chem. 2006;281(49):37888–37892.
  • Son WY, Hwang SH, Han CT, et al. Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod. 1999;5(12):1122–1126.
  • Yamanaka K, Sofikitis NV, Miyagawa I, et al. Ooplasmic round spermatid nuclear injection procedures as an experimental treatment for nonobstructive azoospermia. J Assist Reprod Genet. 1997;14(1):55–62.
  • Amaral A, Castillo J, Estanyol JM, et al. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics. 2013;12(2):330–342.
  • Li M, Li H, Yang H, et al. Comparative proteomic analysis of round and elongated spermatids during spermiogenesis in mice. Biomed Chromatogr. 2020;34(4):e4799.
  • Bose R, Manku G, Culty M, et al. Ubiquitin-proteasome system in spermatogenesis. Adv Exp Med Biol. 2014;759:181–213.
  • Zigo M, Kerns K, Sutovsky M, et al. Modifications of the 26S proteasome during boar sperm capacitation. Cell Tissue Res. 2018;372(3):591–601.
  • Chalmel F, Com E, Lavigne R, et al. An integrative omics strategy to assess the germ cell secretome and to decipher sertoli-germ cell crosstalk in the Mammalian testis. PLoS One. 2014;9(8):e104418.
  • Com E, Melaine N, Chalmel F, et al. Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteomics. 2014;107:128–143.
  • Mancuso F, Calvitti M, Milardi D, et al. Testosterone and FSH modulate Sertoli cell extracellular secretion: proteomic analysis. Mol Cell Endocrinol. 2018;476:1–7.
  • Makanji Y, Harrison CA, Robertson DM. Feedback regulation by inhibins A and B of the pituitary secretion of follicle-stimulating hormone. Vitam Horm. 2011;85:299–321.
  • Luongo C, Gonzalez-Brusi L, Cots-Rodriguez P, et al. Sperm proteome after interaction with reproductive fluids in porcine: from the ejaculation to the fertilization site. Int J Mol Sci. 2020;21(17). DOI:10.3390/ijms21176060
  • Milardi D, Colussi C, Grande G, et al. Olfactory receptors in semen and in the male tract: from proteome to proteins. Front Endocrinol (Lausanne). 2017;8:379.
  • De Toni L, Dipresa S, Foresta C, et al. Molecular bases of sperm thermotaxis: old and new knowledges. Protein Pept Lett. 2018;25(5):446–450.
  • Perez-Cerezales S, Boryshpolets S, Afanzar O, et al. Involvement of opsins in mammalian sperm thermotaxis. Sci Rep. 2015;5:16146.
  • Batruch I, Smith CR, Mullen BJ, et al. Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J Proteome Res. 2012;11(3):1503–1511.
  • Rolland AD, Lavigne R, Dauly C, et al. Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod. 2013;28(1):199–209.
  • Drabovich AP, Dimitromanolakis A, Saraon P, et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med. 2013;5(212):212ra160.
  • Cannarella R, Crafa A, Barbagallo F, et al. Seminal plasma proteomic biomarkers of oxidative stress. Int J Mol Sci. 2020;21(23):9113.
  • Panner Selvam MK, Agarwal A. Proteomic profiling of seminal plasma proteins in varicocele patients. World J Mens Health. 2021;39(1):90–98.
  • Wu Y, Yuan Y, Chen L, et al. Quantitative proteomic analysis of human seminal plasma from normozoospermic and asthenozoospermic individuals. Biomed Res Int. 2019;2019:2735038.
  • Barrachina F, Jodar M, Delgado-Duenas D, et al. Stable-protein pair analysis as a novel strategy to identify proteomic signatures: application to seminal plasma from infertile patients. Mol Cell Proteomics. 2019;18(Suppl1):S77–S90.
  • Saraswat M, Joenvaara S, Jain T, et al. Human spermatozoa quantitative proteomic signature classifies normo- and asthenozoospermia. Mol Cell Proteomics. 2017;16(1):57–72.
  • Panner Selvam MK, Agarwal A. Update on the proteomics of male infertility: A systematic review. Arab J Urol. 2018;16(1):103–112.
  • Bracke A, Peeters K, Punjabi U, et al. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36(3):327–339.
  • James ER, Carrell DT, Aston KI, et al. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int J Mol Sci. 2020;21(15):5377.
  • Guo X, Zhang P, Huo R, et al. Analysis of the human testis proteome by mass spectrometry and bioinformatics. Proteomics Clin Appl. 2008;2(12):1651–1657.
  • Liu M, Hu Z, Qi L, et al. Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics. 2013;13(7):1200–1210.
  • Li J, Guo W, Li F, et al. HnRNPL as a key factor in spermatogenesis: lesson from functional proteomic studies of azoospermia patients with sertoli cell only syndrome. J Proteomics. 2012;75(10):2879–2891.
  • Alikhani M, Mirzaei M, Sabbaghian M, et al. Quantitative proteomic analysis of human testis reveals system-wide molecular and cellular pathways associated with non-obstructive azoospermia. J Proteomics. 2017;162:141–154.
  • Jaiswal D, Trivedi S, Agrawal NK, et al. Dysregulation of apoptotic pathway candidate genes and proteins in infertile azoospermia patients. Fertil Steril. 2015;104(3):736–43 e6.
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–D368.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613.
  • Weedin JW, Bennett RC, Fenig DM, et al. Early versus late maturation arrest: reproductive outcomes of testicular failure. J Urol. 2011;186(2):621–626.
  • Goldberg E, Eddy EM, Duan C, et al. LDHC: the ultimate testis-specific gene. J Androl. 2010;31(1):86–94.
  • Danshina PV, Geyer CB, Dai Q, et al. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod. 2010;82(1):136–145.
  • Boer PH, Adra CN, Lau YF, et al. The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol Cell Biol. 1987;7(9):3107–3112.
  • Goldberg E. Lactate dehydrogenase in spermatozoa: subunit interactions in vitro. Arch Biochem Biophys. 1965;109:134–141.
  • Grootegoed JA, Jansen R, Van der Molen HJ. The role of glucose, pyruvate and lactate in ATP production by rat spermatocytes and spermatids. Biochim Biophys Acta. 1984;767(2):248–256.
  • Practice Committee of the American Society for Reproductive Medicine. Electronic address aao. Management of nonobstructive azoospermia: a committee opinion. Fertil Steril. 2018;110(7): 1239–1245.
  • Silber SJ, Nagy Z, Devroey P, et al. Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure. Hum Reprod. 1997;12(11):2422–2428.
  • Del Castillo EB, Trabucco A. FA DElB. Syndrome produced by absence of the germinal epithelium without impairment of the Sertoli or Leydig cells. J Clin Endocrinol Metab. 1947;7(7):493–502.
  • Hu XL, Olsson T, Johansson IM, et al. Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats. Eur J Neurosci. 2004;20(5):1177–1188.
  • Kim SK, Yoon YD, Park YS, et al. Involvement of the Fas-Fas ligand system and active caspase-3 in abnormal apoptosis in human testes with maturation arrest and Sertoli cell-only syndrome. Fertil Steril. 2007;87(3):547–553.
  • O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Androl. 2015;17(4):583.
  • Rato L, Duarte AI, Tomás GD, et al. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014;1837(3):335–344.
  • Oliveira PF, Martins AD, Moreira AC, et al. The Warburg effect revisited–lesson from the Sertoli cell. Med Res Rev. 2015;35(1):126–151.
  • Alves MG, Martins AD, Vaz CV, et al. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol. 2014;171(4):1033–1042.
  • Martins AD, Monteiro MP, Silva BM, et al. Metabolic dynamics of human sertoli cells are differentially modulated by physiological and pharmacological concentrations of glp-1. Toxicol Appl Pharmacol. 2019;362:1–8.
  • Li SS, O’Brien DA, Hou EW, et al. Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biol Reprod. 1989;40(1):173–180.
  • Ricci G, Catizone A, Esposito R, et al. Diabetic rat testes: morphological and functional alterations. Andrologia. 2009;41(6):361–368.
  • Alves MG, Martins AD, Cavaco JE, et al. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function. Tissue Barriers. 2013;1(2):e23992.
  • Braga PC, Pereira SC, Ribeiro JC, et al. Late-onset hypogonadism and lifestyle-related metabolic disorders. Andrology. 2020;8(6):1530–1538.
  • Asghari A, Marashi SA, Ansari-Pour N. A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst Biol Reprod Med. 2017;63(2):100–112.
  • Kumar V, Rangaraj N, Shivaji S. Activity of pyruvate dehydrogenase A (PDHA) in hamster spermatozoa correlates positively with hyperactivation and is associated with sperm capacitation. Biol Reprod. 2006;75(5):767–777.
  • Padidar K, Vahidi E, Sabbaghian M, et al. Identification of miRNAs and the target genes related to male infertility and smoking using bioinformatics approaches. Hum Fertil (Camb). 2020;1–10.
  • Brehm R, Rey R, Kliesch S, et al. Mitotic activity of Sertoli cells in adult human testis: an immunohistochemical study to characterize Sertoli cells in testicular cords from patients showing testicular dysgenesis syndrome. Anat Embryol (Berl). 2006;211(3):223–236.
  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004;117(6):773–786.
  • Castillo J, Knol JC, Korver CM, et al. Human testis phosphoproteome reveals kinases as potential targets in spermatogenesis and testicular cancer. Mol Cell Proteomics. 2019;18(Suppl1):S132–S144.
  • Huang Y-L, Zhang P-F, Fu Q, et al. Novel targets identified by integrated proteomic and phosphoproteomic analysis in spermatogenesis of swamp buffalo (Bubalus bubalis). Sci Rep. 2020;10(1):15659.
  • Pang A, Rennert O. Protein acetylation and spermatogenesis. Reprod Syst Sex Disord. 2013;Suppl 1(5). DOI:10.4172/2161-038x.s1-005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.