206
Views
3
CrossRef citations to date
0
Altmetric
Review

An overview of lipidomics utilizing cadaver derived biological samples

, & ORCID Icon
Pages 453-461 | Received 03 Apr 2021, Accepted 09 Jun 2021, Published online: 23 Jun 2021

References

  • Crick F. Central dogma of molecular biology. Nature. 1970 Aug 8;227(5258):561–563.
  • Mulder GJ. Sur la composition de quelques substances animales bulletin des sciences physiques et Naturelles en Néerlande. 104 (1838):150-155.
  • Hartley H. Origin of the word ‘protein.’ Nature. 1951 Aug 11;168(4267):244.
  • Danielli JF, Davson H. A contribution to the theory of permeability of thin films. J Cell Comp Physiol. 1935;5(4):495–508.
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731.
  • Piomelli D, Astarita G, Rapaka R. A neuroscientist’s guide to lipidomics. Nat Rev Neurosci. 2007 Oct;8(10):743–754.
  • Lin JB, Mast N, Bederman IR, et al. Cholesterol in mouse retina originates primarily from in situ de novo biosynthesis. J Lipid Res. 2016 Feb;57(2):258–264.
  • Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009 Apr; 50: S9–14.
  • Fahy E, Subramaniam S, Brown HA, et al. A comprehensive classification system for lipids. J Lipid Res. 2005 May;46(5):839–861.
  • Fahy E, Cotter D, Sud M, et al. Lipid classification, structures and tools. Biochim Biophys Acta. 2011 Nov;1811(11):637–647.
  • Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016 Nov;41(11):954–969.
  • Villanueva J, Philip J, Chaparro CA, et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J Proteome Res. 2005 Jul-Aug;4(4):1060–1072.
  • Crane AM, Hua HU, Coggin AD, et al. Mass spectrometric analyses of phosphatidylcholines in alkali-exposed corneal tissue. Invest Ophthalmol Vis Sci. 2012;53(11):7122–7130.
  • Parikh T, Eisner N, Venugopalan P, et al. Proteomic analyses of corneal tissue subjected to alkali exposure. Invest Ophthalmol Vis Sci. 2011 Mar;52(3):1819–1831.
  • Aljohani AJ, Munguba GC, Guerra Y, et al. Sphingolipids and ceramides in human aqueous humor. Mol Vis. 2013;19:1966–1984.
  • Edwards G, Aribindi K, Guerra Y, et al. Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie. 2014 Jun;101:232–247.
  • Edwards G, Aribindi K, Guerra Y, et al. Sphingolipids and ceramides of mouse aqueous humor: comparative profiles from normotensive and hypertensive DBA/2J mice. Biochimie. 2014 Jul 9;105:99–109.
  • Aribindi K, Guerra Y, Lee RK, et al. Comparative phospholipid profiles of control and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2013;54(4):3037–3044.
  • MZ C, AK V, Piqueras MC, et al. Optic nerve lipidomics reveal impaired glucosylsphingosine lipids pathway in Glaucoma. Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1789–1798.
  • Milbeck SM, Bhattacharya SK. Alteration in lysophospholipids and converting enzymes in Glaucomatous optic nerves. Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):60. [PMC7415893].
  • Nagy K, Brahmbhatt VV, Berdeaux O, et al. Comparative study of serine-plasmalogens in human retina and optic nerve: identification of atypical species with odd carbon chains. J Lipid Res. 2012 Apr;53(4):776–783.
  • Acar N, Berdeaux O, Gregoire S, et al. Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids? PLoS One. 2012;7(4):e35102.
  • Saab S, Mazzocco J, Creuzot-Garcher CP, et al. Plasmalogens in the retina: from occurrence in retinal cell membranes to potential involvement in pathophysiology of retinal diseases. Biochimie. 2014 Dec;107(Pt A):58–65.
  • Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008 May;49(5):1137–1146.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509.
  • Mahrous EA, Lee RB, Lee RE. A rapid approach to lipid profiling of mycobacteria using 2D HSQC NMR maps. J Lipid Res. 2008 Feb;49(2):455–463.
  • Szulc ZM, Bai A, Bielawski J, et al. Synthesis, NMR characterization and divergent biological actions of 2ʹ-hydroxy-ceramide/dihydroceramide stereoisomers in MCF7 cells. Bioorg Med Chem. 2010 Nov 1;18(21):7565–7579.
  • Vetica F, Sansone A, Meliota C, et al. Free-radical-mediated formation of trans-cardiolipin isomers, analytical approaches for lipidomics and consequences of the structural organization of membranes. Biomolecules. 2020 Aug 15;10(8):1189.
  • Ma YJ, Fan S, Shao H, et al. Use of Multiplied, Added, Subtracted and/or FiTted Inversion Recovery (MASTIR) pulse sequences. Quant Imaging Med Surg. 2020 Jun;10(6):1334–1369.
  • Yang K, Cheng H, Gross RW, et al. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem. 2009 Jun 1;81(11):4356–4368.
  • Herzog R, Schwudke D, Schuhmann K, et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 2011;12(1):R8.
  • Schuhmann K, Herzog R, Schwudke D, et al. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass spectrometers. Anal Chem. 2011 Jul 15;83(14):5480–5487.
  • Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005 Jul;4(7):594–610.
  • Avela HF, Siren H. Advances in lipidomics. Clin Chim Acta. 2020Nov;510:123–141.
  • Myer C, Perez J, Abdelrahman L, et al. Differentiation of soluble aqueous humor metabolites in primary open angle glaucoma and controls. Exp Eye Res. 2020;194:108024.
  • Myer C, Abdelrahman L, Banerjee S, et al. Aqueous humor metabolite profile of pseudoexfoliation glaucoma is distinctive. Mol Omics. 2020 Oct 12;16(5):425-435.•
  • Rivera ES, Djambazova KV, Neumann EK, et al. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: a brief review and perspective. J Mass Spectrom. 2020 Dec;55(12):e4614.
  • Pathak P, Sarycheva A, Baird MA, et al. Delineation of Isomers by the (13)C shifts in ion mobility spectra. J Am Soc Mass Spectrom. 2021 Jan 6;32(1):340–345.
  • Yoon D, Kim YJ, Lee WK, et al. Metabolic changes in serum metabolome of beagle dogs fed black ginseng. Metabolites. 2020 Dec 19;10(12):517.
  • Khattri RB, Kim K, Thome T, et al. Unique metabolomic profile of skeletal muscle in chronic limb threatening ischemia. J Clin Med. 2021 Feb 2;10(3):548.
  • Hani A, Diserens G, Oevermann A, et al. Sampling method affects hr-mas NMR spectra of healthy caprine brain biopsies. Metabolites. 2021 Jan 6;11(1):38.
  • Gonnella NC. Chromatographic Separation and NMR an integrated approach in pharmaceutical development. Adv Chromatogr. 2012;50:93–138.
  • Pauling JK, Hermansson M, Hartler J, et al. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS One. 2017;12(11):e0188394.
  • Fishman EK, Magid D, Brooker AF, et al. Fractures of the sacrum and sacroiliac joint: evaluation by computerized tomography with multiplanar reconstruction. South Med J. 1988 Feb;81(2):171–177.
  • Saeed M, Kausar MA, Singh R, et al. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Curr Protein Pept Sci. 2020;21(9):846–859.
  • Koelmel JP, Napolitano MP, Ulmer CZ, et al. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics. 2020 Apr 19;16(5):56.
  • Suryanarayan A, Cubas M, Craig OE, et al. Lipid residues in pottery from the Indus Civilisation in northwest India. J Archaeol Sci. 2021 Jan; 125: 105291.
  • Pesko BK, Weidt S, McLaughlin M, et al. Postmortomics: the potential of untargeted metabolomics to highlight markers for time since death. OMICS. 2020 Nov;24(11):649–659.
  • Langley NR, Wood P, Herling P, et al. Forensic postmortem interval estimation from skeletal muscle tissue: a lipidomics approach. Forensic Anthropol. 2019;2(3):152–157.
  • Wilmott LA, Grambergs RC, Allegood JC, et al. Analysis of sphingolipid composition in human vitreous from control and diabetic individuals. J Diabetes Complications. 2019 Mar;33(3):195–201.
  • Lefterov I, Wolfe CM, Fitz NF, et al. APOE2 orchestrated differences in transcriptomic and lipidomic profiles of postmortem AD brain. Alzheimers Res Ther. 2019 Dec 30;11(1):113.
  • Otoki Y, Kato S, Nakagawa K, et al. Lipidomic analysis of postmortem prefrontal cortex phospholipids reveals changes in choline plasmalogen containing docosahexaenoic acid and stearic acid between cases with and without alzheimer’s disease. Neuromolecular Med. 2021 Mar;23(1):161–175.
  • Lam SM, Wang Y, Duan X, et al. Brain lipidomes of subcortical ischemic vascular dementia and mixed dementia. Neurobiol Aging. 2014 Oct;35(10):2369–2381.
  • Ben-David O, Pewzner-Jung Y, Brenner O, et al. Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem. 2011 Aug 26;286(34):30022–30033.
  • Crane AM, Bhattacharya SK. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol Biol. 2013;1014:65–70.
  • Aribindi K, Guerra Y, Piqueras Mdel C, et al. Cholesterol and glycosphingolipids of human trabecular meshwork and aqueous humor: comparative profiles from control and glaucomatous donors. Curr Eye Res. 2013 Oct;38(10):1017–1026.
  • Cortes M, Pareja E, Garcia-Canaveras JC, et al. Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction. J Hepatol. 2014 Sep;61(3):564–574.
  • Sparagna GC, Chicco AJ, Murphy RC, et al. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res. 2007 Jul;48(7):1559–1570.
  • Lumbreras B, Porta M, Marquez S, et al. QUADOMICS: an adaptation of the Quality Assessment of Diagnostic Accuracy Assessment (QUADAS) for the evaluation of the methodological quality of studies on the diagnostic accuracy of ‘-omics’-based technologies. Clin Biochem. 2008 Nov;41(16–17):1316–1325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.