709
Views
5
CrossRef citations to date
0
Altmetric
Review

Insights and prospects for ion mobility-mass spectrometry in clinical chemistry

ORCID Icon, ORCID Icon & ORCID Icon
Pages 17-31 | Received 02 Sep 2021, Accepted 23 Dec 2021, Published online: 17 Jan 2022

References

  • Finlayson D, Rinaldi C, Baker MJ. Is infrared spectroscopy ready for the clinic? Anal Chem. 2019;91(19):12117–12128.
  • Butler HJ, Cameron JM, Jenkins CA, et al. Shining a light on clinical spectroscopy: translation of diagnostic IR, 2D-IR and Raman spectroscopy towards the clinic. Clin Spectrosc. 2019;1:100003.
  • Bocklitz TW, Guo S, Ryabchykov O, et al. Raman based molecular imaging and analytics: a magic bullet for biomedical applications!? Anal Chem. 2016;88(1):133–151.
  • Abraham JL, Etz ES. Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe. Science. 1979;206(4419):716–718.
  • Fung AWS, Sugumar V, Ren AH, et al. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol. 2020;73(2):61–69.
  • Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical laboratory. Clin Chem. 2016;62(1):92–98.
  • May JC, Goodwin CR, McLean JA. Ion mobility-mass spectrometry strategies for untargeted systems, synthetic, and chemical biology. Curr Opin Biotechnol. 2015;31:117–121.
  • May JC, McLean JA. Advanced multidimensional separations in mass spectrometry: navigating the big data Deluge. Annu Rev Anal Chem (Palo Alto Calif). 2016;9(1):387.
  • Mei H, Hsieh Y, Nardo C, et al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery. Rapid Commun Mass Spectrom. 2003;17(1):97–103.
  • Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 2009;30(1):19.
  • Larger PJ, Breda M, Fraier D, et al. Ion-suppression effects in liquid chromatography-tandem mass spectrometry due to a formulation agent, a case study in drug discovery bioanalysis. J Pharm Biomed Anal. 2005;39(1–2):206–216.
  • van Den Ouweland JMW, Kema IP. The role of liquid chromatography–tandem mass spectrometry in the clinical laboratory. J Chromatogr B. 2012;883–884:18–32.
  • Addie RD, Balluff B, Bovée JVMG, et al. Current state and future challenges of mass spectrometry imaging for clinical research. Anal Chem. 2015;87(13):6426–6433.
  • Lanucara F, Holman SW, Gray CJ, et al. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6(4):281–294.
  • Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30(11):2185.
  • Harris RA, Leaptrot KL, May JC, et al. New frontiers in lipidomics analyses using structurally selective ion mobility-mass spectrometry. TrAC, Trends Anal Chem. 2019;116:316.
  • Levy AJ, Oranzi NR, Ahmadireskety A, et al. Recent progress in metabolomics using ion mobility-mass spectrometry. Trends Analyt Chem. 2019;116:274–281.
  • Sherrod SD, McLean JA. Systems-wide high-dimensional data acquisition and informatics using structural mass spectrometry strategies. Clin Chem. 2016;62(1):77–83.
  • Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, et al. Untargeted metabolomics strategies—challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27(12):1897–1905.
  • Nichols CM, Dodds JN, Rose BS, et al. Untargeted molecular discovery in primary metabolism: collision cross section as a molecular descriptor in ion mobility-mass spectrometry. Anal Chem. 2018;90(24):14484–14492.
  • Cohen MJ, Karasek FW. Plasma chromatographytm—A new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970;8(6):330–337.
  • Revercomb HE, Mason EA. Theory of plasma chromatography/gaseous electrophoresis. Review. Anal Chem. 2002;47(7):970–983.
  • Gabelica V, Marklund E. Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol. 2018;42:51–59.
  • Chouinard CD, Wei MS, Beekman CR, et al. Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem. 2016;62(1):124–133.
  • Naylor CN, Reinecke T, Ridgeway ME, et al. Validation of calibration parameters for trapped ion mobility spectrometry. J Am Soc Mass Spectrom. 2019;30(10):2152–2162.
  • Mason EA, McDaniel EW. Transport properties of ions in gases. Trans Prop Ions Gases. 1988.
  • Hupin S, Lavanant H, Renaudineau S, et al. A calibration framework for the determination of accurate collision cross sections of polyanions using polyoxometalate standards. Rapid Commun Mass Spectrom. 2018;32(19):1703–1710.
  • Richardson K, Langridge D, Dixit SM, et al. An improved calibration approach for traveling wave ion mobility spectrometry: robust, high-precision collision cross sections. Anal Chem. 2021;93(7):3542–3550.
  • May JC, Morris CB, McLean JA. Ion Mobility Collision Cross Section Compendium. Anal Chem. 2017;89(2):1032–1044.
  • Chai M, Young MN, Liu FC, et al. A Transferable, Sample-Independent Calibration Procedure for Trapped Ion Mobility Spectrometry (TIMS). Anal Chem. 2018;90(15):9040–9047.
  • Stow SM, Causon TJ, Zheng X, et al. An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem. 2017;89(17):9048–9055.
  • Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12(4):797–813.
  • May JC, McLean JA. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem. 2015;87(3):1422–1436.
  • Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. Mass Spectrom Rev. 2021.
  • Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochimica Et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2011;1811(11):935–945.
  • Jiang W, Chung NA, May JC, et al. Ion mobility–mass spectrometry. Encycl Anal Chem. 2019;1–34.
  • Reisdorph R, Michel C, Quinn K, et al. Untargeted differential metabolomics analysis using drift tube ion mobility-mass spectrometry. Methods Mol Biol. 2020;2084:55–78.
  • Stiving AQ, Jones BJ, Ujma J, et al. Collision cross sections of charge-reduced proteins and protein complexes: a database for collision cross section calibration. Anal Chem. 2020;92(6):4475–4483.
  • May JC, Morris CB, McLean JA. Ion mobility collision cross section compendium. Anal Chem. 2016;89(2):1032–1044.
  • Ruotolo BT, Benesch JLP, Sandercock AM, et al. Ion mobility–mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3(7):1139–1152.
  • Pringle CCT, Duguet Y, Kerswell RR. Highly symmetric travelling waves in pipe flow. Philos Trans R Soc A Math Phys Eng Sci. 2009;367(1888):457–472.
  • Shvartsburg AA, Smith RD. Fundamentals of traveling wave ion mobility spectrometry. Anal Chem. 2008;80(24):9689–9699.
  • Pringle CCT, Kerswell RR. Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys Rev Lett. 2007;99(7).
  • Ruotolo BT, Giles K, Campuzano I, et al. Evidence for macromolecular protein rings in the absence of bulk water. Science. 2005;310(5754):1658–1661.
  • Ridgeway ME, Wolff JJ, Silveira JA, et al. Gated trapped ion mobility spectrometry coupled to Fourier transform ion cyclotron resonance mass spectrometry. Int J Ion Mobility Spectrom. 2016;19(2–3):77–85.
  • Michelmann K, Silveira JA, Ridgeway ME, et al. Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom. 2014;26(1):14–24.
  • Fernandez-Lima F, Kaplan DA, Suetering J, et al. Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobility Spectrom. 2011;14(2):93–98.
  • Schneider BB, Nazarov EG, Londry F, et al. Differential mobility spectrometry mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2016;35(6):687–737.
  • Giles K, Ujma J, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system. Anal Chem. 2019;91(13):8564–8573.
  • Conant CR, Attah IK, Garimella SVB, et al. Evaluation of waveform profiles for traveling wave ion mobility separations in structures for lossless ion manipulations. J Am Soc Mass Spectrom. 2021;32(1):225–236.
  • Li A, Conant CR, Zheng X, et al. Assessing collision cross section calibration strategies for traveling wave-based ion mobility separations in structures for lossless ion manipulations. Anal Chem. 2020;92(22):14976–14982.
  • May JC, Leaptrot KL, Rose BS, et al. Resolving power and collision cross section measurement accuracy of a prototype high-resolution ion mobility platform incorporating structures for lossless ion manipulation. J Am Soc Mass Spectrom. 2021;32(4):1126–1137.
  • May JC, Knochenmuss R, Fjeldsted JC, et al. Resolution of isomeric mixtures in ion mobility using a combined demultiplexing and peak deconvolution technique. Anal Chem. 2020;92(14):9482–9492.
  • Burnum-Johnson KE, Zheng X, Dodds JN, et al. Ion mobility spectrometry and the Omics: distinguishing isomers, molecular classes and contaminant ions in complex samples. TrAC - Trends Anal Chem. 2019;116:292–299.
  • Wormwood KL, Deng L, Hamid AM, et al. The potential for ion mobility in pharmaceutical and clinical analyses. Adv Exp Med Biol. 2019;1140:299–316.
  • Delvaux A, Rathahao-Paris E, Alves S. An Emerging Powerful technique for distinguishing isomers: trapped ion mobility spectrometry time-of-flight mass spectrometry for rapid characterization of estrogen isomers. Rapid Commun Mass Spectrom. 2020;34(24):e8928.
  • Valentine SJ, Kulchania M, Barnes CAS, et al. Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int J Mass Spectrom. 2001;212(1–3):97–109.
  • Zhou Z, Shen X, Tu J, et al. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. Anal Chem. 2016;88(22):11084–11091.
  • Zhou Z, Luo M, Chen X, et al. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat Commun. 2020;11(1):1–13.
  • Picache JA, Rose BS, Balinski A, et al. Collision cross section compendium to annotate and predict multi-Omic compound identities. Chem Sci. 2019;10(4):983–993.
  • Zhou Z, Tu J, Zhu ZJ. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol. 2018;42:34–41.
  • Picache JA, May JC, McLean JA. Chemical class prediction of unknown biomolecules using ion mobility-mass spectrometry and machine learning: supervised inference of feature taxonomy from ensemble randomization. Anal Chem. 2020;92(15):10759–10767.
  • Connolly JRFB, Munoz-Muriedas J, Lapthorn C, et al. Investigation into small molecule isomeric glucuronide metabolite differentiation using in silico and experimental collision cross-section values. J Am Soc Mass Spectrom. 2021;32(8):1976–1986.
  • Plante P-L, Francovic-Fontaine É, May JC, et al. Predicting ion mobility collision cross-sections using a deep neural network: deepCCS. Anal Chem. 2019;91(8):5191–5199.
  • Avataneo V, D’Avolio A, Cusato J, et al. LC-MS application for therapeutic drug monitoring in alternative matrices. J Pharm Biomed Anal. 2019;166:40–51.
  • Garcia X, Sabaté MDM, Aubets J, et al. Ion mobility–mass spectrometry for bioanalysis. Separations. 2021;8(3):33.
  • Davis DE Jr., Leaptrot KL, Koomen DC, et al. Multidimensional separations of intact phase II steroid metabolites utilizing LC–ion mobility–HRMS. Anal Chem. 2021;93(31):10990–10998.
  • Navajas R, Imaz C, Carreras D, et al. Determination of epitestosterone and testosterone in urine by high-performance liquid chromatography. J Chromatogr B. 1995;673(2):159–164.
  • Kaur-Atwal G, Reynolds JC, Mussell C, et al. Determination of testosterone and epitestosterone glucuronides in urine by ultra performance liquid chromatography-ion mobility-mass spectrometry. Analyst. 2011;136(19):3911–3916.
  • Fragkaki AG, Angelis YS, Koupparis M, et al. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities: applied modifications in the steroidal structure. Steroids. 2009;74(2):172–197.
  • Clark AS, Henderson LP. Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci Biobehav Rev. 2003;27(5):413–436.
  • Guo F, Shao J, Liu Q, et al. Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry: a novel approach for clinical monitoring and doping control. Talanta. 2014;125:432–438.
  • Schänzer W. Metabolism of anabolic androgenic steroids. Clin Chem. 1996;42(7):1001–1020.
  • Thevis M, Geyer H, Mareck U, et al. Screening for unknown synthetic steroids in human urine by liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2005;40(7):955–962.
  • Badoud F, Guillarme D, Boccard J, et al. Analytical aspects in doping control: challenges and perspectives. Forensic Sci Int. 2011;213(1–3):49–61.
  • Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: analytical approaches in human sports drug testing 2019/2020. Drug Test Anal. 2021;13(1):8–35.
  • Cha E, Kim S, Kim HJ, et al. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag+CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control. Drug Test Anal. 2015;7(11–12):1040–1049.
  • Stojanovic BJ, Göschl L, Forsdahl G, et al. Metabolism of steroids and sport drug testing. Bioanalysis. 2020;12(9):561–563.
  • Forsdahl G, Zanitzer K, Erceg D, et al. Quantification of endogenous steroid sulfates and glucuronides in human urine after intramuscular administration of testosterone esters. Steroids. 2020;157.
  • Plachká K, Pezzatti J, Musenga A, et al. Ion mobility-high resolution mass spectrometry in doping control analysis. Part II: comparison of acquisition modes with and without ion mobility. Anal Chim Acta. 2021;1175:338739.
  • Rzeppa S, Viet L. Analysis of sulfate metabolites of the doping agents oxandrolone and danazol using high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2016;1029–1030:1–9.
  • Rzeppa S, Heinrich G, Hemmersbach P. Analysis of anabolic androgenic steroids as sulfate conjugates using high performance liquid chromatography coupled to tandem mass spectrometry. Drug Test Anal. 2015;7(11–12):1030–1039.
  • Plachká K, Pezzatti J, Musenga A, et al. Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: implementation of a screening method with the assessment of a library of substances prohibited in sports. Anal Chim Acta. 2021;1152:338257.
  • Gosetti F, Mazzucco E, Gennaro MC, et al. Ultra high performance liquid chromatography tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices. A review. J Chromatogr B. 2013;927:22–36.
  • Oranzi NR, Kemperman RHJ, Wei MS, et al. Measuring the integrity of gas-phase conformers of sodiated 25-Hydroxyvitamin D3 by drift tube, traveling wave, trapped, and high-field asymmetric ion mobility. Anal Chem. 2019;91(6):4092–4099.
  • Wormwood Moser KL, van Aken G, DeBord D, et al. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics. Anal Chim Acta. 2021;1146:77–87.
  • Zhang X, Romm M, Zheng X, et al. SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom. 2016;2:1–10.
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–4760.
  • Eriksson C, Masaki N, Yao I, et al. MALDI imaging mass spectrometry—A mini review of methods and recent developments. Mass Spectrom. 2013;2( Special_Issue):S0022–S0022.
  • Paine MRL, Liu J, Huang D, et al. Three-dimensional mass spectrometry imaging identifies lipid markers of medulloblastoma metastasis. Sci Rep. 2019;9(1).
  • Wiseman JM, Ifa DR, Zhu Y, et al. Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Nat Acad Sci. 2008;105(47):18120–18125.
  • Takáts Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–473.
  • Soltwisch J, Göritz G, Jungmann JH, et al. MALDI mass spectrometry imaging in microscope mode with infrared lasers: bypassing the diffraction limits. Anal Chem. 2013;86(1):321–325.
  • Patterson NH, Tuck M, van de Plas R, et al. Advanced registration and analysis of MALDI imaging mass spectrometry measurements through autofluorescence microscopy. Anal Chem. 2018;90(21):12395–12403.
  • Yin R, Burnum-Johnson KE, Sun X, et al. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat Protoc. 2019;14(12):3445–3470.
  • Niehaus M, Soltwisch J, Belov ME, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat Methods. 2019;16(9):925–931.
  • Chughtai K, Heeren RMA. Mass spectrometric imaging for biomedical tissue analysis. Chem Rev. 2010;110(5):3237–3277.
  • McLean JA, Ridenour WB, Caprioli RM. Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom. 2007;42(8):1099–1105.
  • Jackson SN, Ugarov M, Egan T, et al. MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom. 2007;42(8):1093–1098.
  • Buchberger AR, DeLaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem. 2017;90(1):240–265.
  • Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems. Ann Rev Phys Chem. 2021;72:307–329.
  • Blutke A, Sun N, Xu Z, et al. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Sci Rep. 2020;10(1):1–13.
  • Sans M, Feider CL, Eberlin LS. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr Opin Chem Biol. 2018;42:138.
  • Škrášková K, Claude E, Jones EA, et al. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods. 2016;104:69–78.
  • Trim PJ, Henson CM, Avery JL, et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem. 2008;80(22):8628–8634.
  • Kiss A, Heeren RMA. Size, weight and position: ion mobility spectrometry and imaging MS combined. Anal Bioanal Chem. 2011;399(8):2623–2634.
  • Eberlin LS, Norton I, Orringer D, et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Nat Acad Sci. 2013;110(5):1611–1616.
  • Jarmusch AK, Pirro V, Baird Z, et al. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Nat Acad Sci. 2016;113(6):1486–1491.
  • Ford MJ, Van Berkel GJ. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap System. Rapid Commun Mass Spectrom. 2004;18(12):1303–1309.
  • Van Berkel GJ, Kertesz V, Koeplinger KA, et al. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom. 2008;43(4):500–508.
  • Blatherwick EQ, van Berkel GJ, Pickup K, et al. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism. Xenobiotica. 2011;41(8):720–734.
  • Zhang J, Rector J, Lin JQ, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9(406).
  • Sans M, Zhang J, Lin JQ, et al. Performance of the MasSpec pen for rapid diagnosis of ovarian cancer. Clin Chem. 2019;65(5):674–683.
  • Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19–274ra19.
  • King ME, Zhang J, Lin JQ, et al. Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the MasSpec pen technology. Proc Nat Acad Sci. 2021;118(28):2104411118.
  • Santagata S, Eberlin LS, Norton I, et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Nat Acad Sci. 2014;111(30):11121–11126.
  • Balog J, Sasi-Szabó L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194).
  • St John ER, Balog J, McKenzie JS, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017;19(1):1–14.
  • Keating MF, Zhang J, Feider CL, et al. Integrating the MasSpec pen to the Da Vinci surgical system for In Vivo tissue analysis during a robotic assisted porcine surgery. Anal Chem. 2020;92(17):11535–11542.
  • Alexander J, Gildea L, Balog J, et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the IKnife. Surg Endosc. 2017;31(3):1361–1370.
  • Balog J, Kumar S, Alexander J, et al. In Vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew Chem - Int Ed. 2015;54(38):11059–11062.
  • Steinbach J, Goedicke-Fritz S, Tutdibi E, et al. Bedside measurement of volatile organic compounds in the atmosphere of neonatal incubators using ion mobility spectrometry. Front Pediatr. 2019;7(JUN):248.
  • Sabo M, Matejčík Š. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal Chem. 2012;84(12):5327–5334.
  • Nissinen SI, Roine A, Hokkinen L, et al. Detection of pancreatic cancer by urine volatile organic compound analysis. Anticancer Res. 2019;39(1):73–79.
  • Westhoff M, Litterst P, Freitag L, et al. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64(9):744–748.
  • Jünger M, Vautz W, Kuhns M, et al. Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol. 2012;93(6):2603.
  • Silveira JA, Ridgeway ME, Park MA. High resolution trapped ion mobility spectrometry of peptides. Anal Chem. 2014;86(12):5624–5627.
  • Deng L, Ibrahim YM, Hamid AM, et al. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal Chem. 2016;88(18):8957–8964.
  • Eldrid C, Thalassinos K. Developments in tandem ion mobility mass spectrometry. Biochem Soc Trans. 2020;48(6):2457–2466.
  • Ibrahim YM, Hamid AM, Deng L, et al. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst. 2017;142(7):1010–1021.
  • Lee J-Y, Bilbao A, Conant CR, et al. AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry–mass spectrometry. Bioinformatics. 2021.
  • Hollerbach AL, Li A, Prabhakaran A, et al. Ultra-high-resolution ion mobility separations over extended path lengths and mobility ranges achieved using a multilevel structures for lossless ion manipulations module. Anal Chem. 2020;92(11):7972–7979.
  • Deng L, Webb IK, Garimella SVB, et al. Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-ms using structures for lossless ion manipulations. Anal Chem. 2017;89(8):4628–4634.
  • Dodds JN, May JC, McLean JA. Correlating Resolving Power, Resolution, and Collision Cross Section: unifying Cross-Platform Assessment of Separation Efficiency in Ion Mobility Spectrometry. Anal Chem. 2017;89(22):12176–12184.
  • Wojcik R, Nagy G, Attah IK, et al. SLIM ultrahigh resolution ion mobility spectrometry separations of isotopologues and isotopomers reveal mobility shifts due to mass distribution changes. Anal Chem. 2019;91(18):11952–11962.
  • Eldrid C, Ujma J, Kalfas S, et al. Gas phase stability of protein ions in a cyclic ion mobility spectrometry traveling wave device. Anal Chem. 2019;91(12):7554–7561.
  • Rüger CP, Le Maître J, Maillard J, et al. Exploring complex mixtures by cyclic ion mobility high-resolution mass spectrometry: application toward petroleum. Anal Chem. 2021;93(14):5872–5881.
  • Ujma J, Ropartz D, Giles K, et al. Cyclic ion mobility mass spectrometry distinguishes anomers and open-ring forms of pentasaccharides. J Am Soc Mass Spectrom. 2019;30(6):1028–1037.
  • McCullagh M, Giles K, Richardson K, et al. Investigations into the performance of travelling wave enabled conventional and cyclic ion mobility systems to characterise protomers of fluoroquinolone antibiotic residues. Rapid Commun Mass Spectrom. 2019;33(S2):11–21.
  • Garabedian A, Benigni P, Ramirez CE, et al. Towards discovery and targeted peptide biomarker detection using NanoESI-TIMS-TOF MS. J Am Soc Mass Spectrom. 2017;29(5):817–826.
  • Jeanne Dit Fouque K, Fernandez-Lima F. Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry. Trends Analyt Chem. 2019;116:308–315.
  • Vasilopoulou CG, Sulek K, Brunner A-D, et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11(1):1–11.
  • Spraggins JM, Djambazova KV, Rivera ES, et al. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (TimsTOF) mass spectrometry. Anal Chem. 2019;91(22):14552–14560.
  • Kirk AT, Bohnhorst A, Raddatz CR, et al. Ultra-high-resolution ion mobility spectrometry—Current instrumentation, limitations, and future developments. Anal Bioanal Chem. 2019;411(24):6229–6246.
  • Wu C, Siems WF, Klasmeier J, et al. Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal Chem. 1999;72(2):391–395.
  • Garimella SVB, Nagy G, Ibrahim YM, et al. Opening new paths for biological applications of ion mobility - mass spectrometry using structures for lossless ion manipulations. TrAC Trends in Analytical Chemistry. 2019;116:300.
  • Grebe SK, Singh RJ, Connolly JRFB, et al. LC-MS/MS in the clinical laboratory – where to from here? Clin Biochem Rev. 2011;32(1):5.
  • Olivier M, Asmis R, Hawkins GA, et al. The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci. 2019;20(19):4781.
  • Ahmed Z. Practicing precision medicine with intelligently integrative clinical and multi-Omics data analysis. Hum Genomics. 2020;14(1):1–5.
  • Tebani A, Afonso C, Marret S, et al. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.