315
Views
0
CrossRef citations to date
0
Altmetric
Review

Mass spectrometry-based methods for investigating the dynamics and organization of the surfaceome: exploring potential clinical implications

, ORCID Icon, , & ORCID Icon
Pages 99-113 | Received 22 Nov 2023, Accepted 16 Jan 2024, Published online: 09 Feb 2024

References

  • Bausch-Fluck D, Milani ES, Wollscheid B. Surfaceome nanoscale organization and extracellular interaction networks. Curr Opin Chem Biol. 2019;48:26–33. doi: 10.1016/j.cbpa.2018.09.020
  • Xu S, Wu R. Glycobiology and proteomics: has mass spectrometry moved the field forward? Exp Rev Proteom. 2023;20(12):303–307. doi: 10.1080/14789450.2023.2255748
  • Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. Mass Spectrom Rev. 2023;42(2):519–545. doi: 10.1002/mas.21708
  • Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci. 2020;43(1):292–312. doi: 10.1002/jssc.201900700
  • Ramya TNC, Weerapana E, Cravatt BF, et al. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans. Glycobiol. 2013;23(2):211–221. doi: 10.1093/glycob/cws144
  • Wollscheid B, Bausch-Fluck D, Henderson C, et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol. 2009;27(4):378–386. doi: 10.1038/nbt.1532
  • Nunomura K, Nagano K, Itagaki C, et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol Cell Proteomics. 2005;4(12):1968–1976. doi: 10.1074/mcp.M500216-MCP200
  • Li M, Peng F, Wang G, et al. Coupling of cell surface biotinylation and SILAC-based quantitative proteomics identified myoferlin as a potential therapeutic target for nasopharyngeal carcinoma metastasis. Front Cell Dev Biol. 2021;9:621810. doi: 10.3389/fcell.2021.621810
  • Zeng Y, Ramya TNC, Dirksen A, et al. High-efficiency labeling of sialylated glycoproteins on living cells. Nat Methods. 2009;6(3):207–209. doi: 10.1038/nmeth.1305
  • Smeekens JM, Chen W, Wu R. Mass spectrometric analysis of the cell surface N-glycoproteome by combining metabolic labeling and click chemistry. J Am Soc Mass Spectrom. 2015;26(4):604–614. doi: 10.1007/s13361-014-1016-7
  • Rouhanifard SH, Lopez Aguilar A, Meng L, et al. Engineered glycocalyx regulates stem cell proliferation in murine crypt organoids. Cell Chem Biol. 2018;25(4):439–446.e5. doi: 10.1016/j.chembiol.2018.01.010
  • Chen W, Smeekens JM, Wu R. Systematic and site-specific analysis of N-sialoglycosylated proteins on the cell surface by integrating click chemistry and MS-based proteomics. Chem Sci. 2015;6(8):4681–4689. doi: 10.1039/C5SC01124H
  • Herber J, Njavro J, Feederle R, et al. Click chemistry-mediated biotinylation reveals a function for the protease BACE1 in modulating the neuronal surface glycoproteome. Mol & Cell Proteomics. 2018;17(8):1487–1501. doi: 10.1074/mcp.RA118.000608
  • Sun F, Suttapitugsakul S, Wu R. Enzymatic tagging of glycoproteins on the cell surface for their global and site-specific analysis with mass spectrometry. Anal Chem. 2019;91(6):4195–4203. doi: 10.1021/acs.analchem.9b00441
  • Li Y, Wang Y, Yao Y, et al. Rapid enzyme-mediated biotinylation for cell surface proteome profiling. Anal Chem. 2021;93(10):4542–4551. doi: 10.1021/acs.analchem.0c04970
  • Vilen Z, Reeves AE, O’Leary TR, et al. Cell surface engineering enables surfaceome profiling. ACS Chem Biol. 2023;18(4):701–710. doi: 10.1021/acschembio.1c00865
  • Polasky DA, Yu F, Teo GC, et al. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat Methods. 2020;17(11):1125–1132. doi: 10.1038/s41592-020-0967-9
  • Zeng W-F, Cao W-Q, Liu M-Q, et al. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat Methods. 2021;18(12):1515–1523. doi: 10.1038/s41592-021-01306-0
  • Shen J, Chen Z, Sun S. Identifying intact N-glycopeptides from tandem mass spectrometry data using StrucGP. Biophys Rep. 2022;8(5–6):282–300. doi: 10.52601/bpr.2022.220010
  • Ma Y, Yates Iii JR. Proteomics and pulse azidohomoalanine labeling of newly synthesized proteins: what are the potential applications? Expert Rev Proteomics. 2018;15(7):545–554. doi: 10.1080/14789450.2018.1500902
  • Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics. 2022;19(3):165–181. doi: 10.1080/14789450.2022.2070476
  • Yin K, Tong M, Sun F, et al. Quantitative structural proteomics unveils the conformational changes of proteins under the endoplasmic reticulum stress. Anal Chem. 2022;94(38):13250–13260. doi: 10.1021/acs.analchem.2c03076
  • Yin K, Tong M, Suttapitugsakul S, et al. Global quantification of newly synthesized proteins reveals cell type- and inhibitor-specific effects on protein synthesis inhibition. PNAS Nexus. 2023;2(6):pgad168. doi: 10.1093/pnasnexus/pgad168
  • Tekaia F, Yeramian E, Dujon B. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene. 2002;297(1):51–60. doi: 10.1016/S0378-1119(02)00871-5
  • Xu G, Shin SBY, Jaffrey SR. Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci USA. 2009;106(46):19310–19315. doi: 10.1073/pnas.0908958106
  • Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev. 2015;44(15):5495–5551. doi: 10.1039/c5cs00048c
  • Caceres PS, Gravotta D, Zager PJ, et al. Quantitative proteomics of MDCK cells identify unrecognized roles of clathrin adaptor AP-1 in polarized distribution of surface proteins. Proc Natl Acad Sci USA. 2019;116(24):11796–11805. doi: 10.1073/pnas.1821076116
  • Qin W, Cho KF, Cavanagh PE, et al. Deciphering molecular interactions by proximity labeling. Nat Methods. 2021;18(2):133–143. doi: 10.1038/s41592-020-01010-5
  • Li J, Han S, Li H, et al. Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell. 2020;180(2):373–386.e15. doi: 10.1016/j.cell.2019.12.029
  • Bausch-Fluck D, Hofmann A, Bock T, et al. A mass spectrometric-derived cell surface protein atlas. PLoS One. 2015;10(4):e0121314. doi: 10.1371/journal.pone.0121314
  • Bausch-Fluck D, Goldmann U, Müller S, et al. The in silico human surfaceome. Proc Natl Acad Sci USA. 2018;115(46):E10988–E10997. doi: 10.1073/pnas.1808790115
  • van Oostrum M, Müller M, Klein F, et al. Classification of mouse B cell types using surfaceome proteotype maps. Nat Commun. 2019;10(1):5734. doi: 10.1038/s41467-019-13418-5
  • Mahal LK, Yarema KJ, Bertozzi CR. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science. 1997;276(5315):1125–1128.
  • Xiao H, Tang GX, Wu R. Site-specific quantification of surface N-glycoproteins in statin-treated liver cells. Anal Chem. 2016;88(6):3324–3332. doi: 10.1021/acs.analchem.5b04871
  • Feng L, Hong S, Rong J, et al. Bifunctional unnatural sialic acids for dual metabolic labeling of cell-surface sialylated glycans. J Am Chem Soc. 2013;135(25):9244–9247. doi: 10.1021/ja402326z
  • Xu S, Xu X, Wu R. Deciphering the properties and functions of glycoproteins using quantitative proteomics. J Proteome Res. 2023;22(6):1571–1588. doi: 10.1021/acs.jproteome.3c00015
  • Suttapitugsakul S, Tong M, Wu R. Time-resolved and comprehensive analysis of surface glycoproteins reveals distinct responses of monocytes and macrophages to bacterial infection. Angew Chem Int Ed. 2021;60(20):11494–11503.
  • Suttapitugsakul S, Ulmer LD, Jiang C, et al. Surface glycoproteomic analysis reveals that both unique and differential expression of surface glycoproteins determine the cell type. Anal Chem. 2019;91(10):6934–6942. doi: 10.1021/acs.analchem.9b01447
  • Nalbach K, Schifferer M, Bhattacharya D, et al. Spatial proteomics reveals secretory pathway disturbances caused by neuropathy-associated TECPR2. Nat Commun. 2023;14(1):870. doi: 10.1038/s41467-023-36553-6
  • Hong S, Shi Y, Wu NC, et al. Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification. Nat Commun. 2019;10(1):1799. doi: 10.1038/s41467-019-09608-w
  • Sun T, Yu S-H, Zhao P, et al. One-step selective exoenzymatic labeling (SEEL) strategy for the biotinylation and identification of glycoproteins of living cells. J Am Chem Soc. 2016;138(36):11575–11582. doi: 10.1021/jacs.6b04049
  • Capicciotti CJ, Zong C, Sheikh MO, et al. Cell-surface glyco-engineering by exogenous enzymatic transfer using a bifunctional CMP-Neu5Ac derivative. J Am Chem Soc. 2017;139(38):13342–13348. doi: 10.1021/jacs.7b05358
  • Mbua NE, Li X, Flanagan-Steet HR, et al. Selective exo-enzymatic labeling of n-glycans on the surface of living cells by recombinant ST6Gal I. Angew Chem Int Ed. 2013;52(49):13012–13015. doi: 10.1002/anie.201307095
  • Zheng J, Xiao H, Wu R. Specific identification of glycoproteins bearing the Tn antigen in human cells. Angew Chem Int Ed. 2017;56(25):7107–7111. doi: 10.1002/anie.201702191
  • Parikka K, Master E, Tenkanen M. Oxidation with galactose oxidase: multifunctional enzymatic catalysis. J Mol Catal B: Enzym. 2015;120:47–59. doi: 10.1016/j.molcatb.2015.06.006
  • Xu S, Xu X, Wang Z, et al. A systematic investigation of proteoforms with N-terminal glycine and their dynamics reveals its impacts on protein stability. Angew Chem Int Ed. 2024;63(6):e202315286. doi: 10.1002/anie.202315286
  • Schaefer K, Lui I, Byrnes JR, et al. Direct identification of proteolytic cleavages on living cells using a glycan-tethered peptide ligase. ACS Cent Sci. 2022;8(10):1447–1456. doi: 10.1021/acscentsci.2c00899
  • Weeks AM, Byrnes JR, Lui I, et al. Mapping proteolytic neo-N termini at the surface of living cells. Proc Natl Acad Sci USA. 2021;118(8):e2018809118. doi: 10.1073/pnas.2018809118
  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–145. doi: 10.1038/35100529
  • Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Basic Res Cardiol. 2008;103(5):398–406. doi: 10.1007/s00395-008-0733-0
  • Papalazarou V, Maddocks ODK. Supply and demand: cellular nutrient uptake and exchange in cancer. Mol Cell. 2021;81(18):3731–3748. doi: 10.1016/j.molcel.2021.08.026
  • Governa V, Talbot H, Gonçalves de Oliveira K, et al. Landscape of surfaceome and endocytome in human glioma is divergent and depends on cellular spatial organization. Proc Natl Acad Sci USA. 2022;119(9):e2114456119. doi: 10.1073/pnas.2114456119
  • van Oostrum M, Campbell B, Seng C, et al. Surfaceome dynamics reveal proteostasis-independent reorganization of neuronal surface proteins during development and synaptic plasticity. Nat Commun. 2020;11(1):4990. doi: 10.1038/s41467-020-18494-6
  • Xiao H, Wu R. Quantitative investigation of human cell surface N-glycoprotein dynamics. Chem Sci. 2017;8(1):268–277.
  • Lu H, Zhou Q, He J, et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213. doi: 10.1038/s41392-020-00315-3
  • Frei AP, Jeon O-Y, Kilcher S, et al. Direct identification of ligand-receptor interactions on living cells and tissues. Nat Biotechnol. 2012;30(10):997–1001. doi: 10.1038/nbt.2354
  • Sobotzki N, Schafroth MA, Rudnicka A, et al. HATRIC-based identification of receptors for orphan ligands. Nat Commun. 2018;9(1):1519. doi: 10.1038/s41467-018-03936-z
  • Kim DI, Jensen SC, Noble KA, et al. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell. 2016;27(8):1188–1196. doi: 10.1091/mbc.E15-12-0844
  • Roux KJ, Kim DI, Raida M, et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Bio. 2012;196(6):801–810. doi: 10.1083/jcb.201112098
  • Branon TC, Bosch JA, Sanchez AD, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36(9):880–887. doi: 10.1038/nbt.4201
  • Lam SS, Martell JD, Kamer KJ, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods. 2015;12(1):51–54. doi: 10.1038/nmeth.3179
  • Martell JD, Deerinck TJ, Sancak Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol. 2012;30(11):1143–1148. doi: 10.1038/nbt.2375
  • Liu Q, Zheng J, Sun W, et al. A proximity-tagging system to identify membrane protein–protein interactions. Nat Methods. 2018;15(9):715–722. doi: 10.1038/s41592-018-0100-5
  • Reeves AE, Huang ML. Proximity labeling technologies to illuminate glycan–protein interactions. Curr Opin Chem Biol. 2023;72:102233. doi: 10.1016/j.cbpa.2022.102233
  • Zhou Y, Zou P. The evolving capabilities of enzyme-mediated proximity labeling. Curr Opin Chem Biol. 2021;60:30–38. doi: 10.1016/j.cbpa.2020.06.013
  • Saka SK, Honigmann A, Eggeling C, et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun. 2014;5(1):4509. doi: 10.1038/ncomms5509
  • Geri JB, Oakley JV, Reyes-Robles T, et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science. 2020;367(6482):1091–1097. doi: 10.1126/science.aay4106
  • Buksh BF, Knutson SD, Oakley JV, et al. μMap-red: proximity labeling by red light photocatalysis. J Am Chem Soc. 2022;144(14):6154–6162. doi: 10.1021/jacs.2c01384
  • Müller M, Gräbnitz F, Barandun N, et al. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat Commun. 2021;12(1):7036. doi: 10.1038/s41467-021-27280-x
  • Kuimova MK, Yahioglu G, Ogilby PR. Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants. J Am Chem Soc. 2009;131(1):332–340. doi: 10.1021/ja807484b
  • Sungkaworn T, Jobin M-L, Burnecki K, et al. Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature. 2017;550(7677):543–547. doi: 10.1038/nature24264
  • Tremblay T-L, Hill JJ. Biotin-transfer from a trifunctional crosslinker for identification of cell surface receptors of soluble protein ligands. Sci Rep. 2017;7(1):46574. doi: 10.1038/srep46574
  • Frey K, Goetze S, Rohrer L, et al. Decoding Functional High-Density Lipoprotein Particle Surfaceome Interactions. Int J Mol Sci. 2022;23(16):9506. doi: 10.3390/ijms23169506
  • Zheng J, Zheng Z, Fu C, et al. Deciphering intercellular signaling complexes by interaction-guided chemical proteomics. Nat Commun. 2023;14(1):4138. doi: 10.1038/s41467-023-39881-9
  • Paek J, Kalocsay M, Staus DP, et al. Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell. 2017;169(2):338–349.e11. doi: 10.1016/j.cell.2017.03.028
  • Perez Verdaguer M, Zhang T, Surve S, et al. Time-resolved proximity labeling of protein networks associated with ligand-activated EGFR. Cell Rep. 2022;39(11). doi: 10.1016/j.celrep.2022.110950
  • Kotani N, Gu J, Isaji T, et al. Biochemical visualization of cell surface molecular clustering in living cells. Proc Natl Acad Sci USA. 2008;105(21):7405–7409. doi: 10.1073/pnas.0710346105
  • Martell JD, Yamagata M, Deerinck TJ, et al. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat Biotechnol. 2016;34(7):774–780. doi: 10.1038/nbt.3563
  • Rees JS, Li X-W, Perrett S, et al. Selective proteomic proximity labeling assay using tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. Curr Protoc Protein Sci. 2015;80(1):19.27.1–.19.27.18. doi: 10.1002/0471140864.ps1927s80
  • Li Q, Xie Y, Rice R, et al. A proximity labeling method for protein–protein interactions on cell membrane. Chem Sci. 2022;13(20):6028–6038. doi: 10.1039/d1sc06898a
  • Reyes-Robles T, Olow AK, Bechtel TJ, et al. Nanoscale mapping of EGFR and c-MET protein environments on lung cancer cell surfaces via therapeutic antibody photocatalyst conjugates. ACS Chem Biol. 2022;17(8):2304–2314. doi: 10.1021/acschembio.2c00409
  • Jo M, Stolz DB, Esplen JE, et al. Cross-talk between epidermal growth factor receptor and c-MET signal pathways in transformed cells. J Biol Chem. 2000;275(12):8806–8811. doi: 10.1074/jbc.275.12.8806
  • Velpula KK, Dasari VR, Asuthkar S, et al. EGFR and c-MET cross talk in glioblastoma and its regulation by human cord blood stem cells. Transl Oncol. 2012;5(5):379–392. doi: 10.1593/tlo.12235
  • Wu DW, Chen TC, Huang HS, et al. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(6):e2290–e2290. doi: 10.1038/cddis.2016.192
  • Datta S, Chen D-Y, Tavares AH, et al. High-resolution photocatalytic mapping of SARS-CoV-2 spike interactions on the cell surface. Cell Chem Biol. 2023;30(10):1313–1322.e7. doi: 10.1016/j.chembiol.2023.06.028
  • Yu C, Huang L. Cross-linking Mass spectrometry: an emerging technology for interactomics and structural biology. Anal Chem. 2018;90(1):144–165. doi: 10.1021/acs.analchem.7b04431
  • Savitski MM, Reinhard FBM, Franken H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346(6205):1255784. doi: 10.1126/science.1255784
  • Havugimana PC, Goel RK, Phanse S, et al. Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nat Commun. 2022;13(1):4043. doi: 10.1038/s41467-022-31809-z
  • Sun F, Suttapitugsakul S, Wu R. Unraveling the surface glycoprotein interaction network by integrating chemical crosslinking with MS-based proteomics. Chem Sci. 2021;12(6):2146–2155. doi: 10.1039/d0sc06327d
  • Mandal K, Wicaksono G, Yu C, et al. Structural surfaceomics reveals an AML-specific conformation of integrin β2 as a CAR T cellular therapy target. Nat Cancer. 2023;4(11):1592–1609. doi: 10.1038/s43018-023-00652-6
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi: 10.1038/s41408-021-00459-7
  • Kumar S, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23(3):433–451. doi: 10.1016/j.beha.2010.09.002
  • Rose M, Cardon T, Aboulouard S, et al. Surfaceome proteomic of glioblastoma revealed potential targets for immunotherapy. Front Immunol. 2021;12. doi: 10.3389/fimmu.2021.746168
  • Ghosh D, Funk CC, Caballero J, et al. A cell-surface membrane protein signature for glioblastoma. Cell Syst. 2017;4(5):516–529.e7. doi: 10.1016/j.cels.2017.03.004
  • Koetemann A, Wollscheid B. Apicobasal surfaceome architecture encodes for polarized epithelial functionality and depends on tumor suppressor PTEN. Int J Mol Sci. 2022;23(24):16193. doi: 10.3390/ijms232416193
  • Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA. 2000;97(7):3260–3265. doi: 10.1073/pnas.97.7.3260
  • Chen W, Mou KY, Solomon P, et al. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci USA. 2021;118(4):e2018861118. doi: 10.1073/pnas.2018861118
  • Ferguson ID, Patiño-Escobar B, Tuomivaara ST, et al. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun. 2022;13(1):4121. doi: 10.1038/s41467-022-31810-6
  • Lee JY, Jonus HC, Sadanand A, et al. Identification and targeting of protein tyrosine kinase 7 (PTK7) as an immunotherapy candidate for neuroblastoma. Cell Rep Med. 2023;4(6):101091. doi: 10.1016/j.xcrm.2023.101091
  • Weekes MP, Antrobus R, Talbot S, et al. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6. J Proteome Res. 2012;11(3):1475–1484. doi: 10.1021/pr201135e
  • Berg Luecke L, Waas M, Littrell J, et al. Surfaceome mapping of primary human heart cells with CellSurfer uncovers cardiomyocyte surface protein LSMEM2 and proteome dynamics in failing hearts. Nat Cardiovasc Res. 2023;2(1):76–95. doi: 10.1038/s44161-022-00200-y
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020;9(3):34. doi: 10.3390/antib9030034
  • Wu H, Kohler J. Photocrosslinking probes for capture of carbohydrate interactions. Curr Opin Chem Biol. 2019;53:173–182. doi: 10.1016/j.cbpa.2019.09.002
  • Kalxdorf M, Günthner I, Becher I, et al. Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat Methods. 2021;18(1):84–91. doi: 10.1038/s41592-020-01022-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.