139
Views
0
CrossRef citations to date
0
Altmetric
Review

Deciphering a proteomic signature for the early detection of breast cancer from breast milk: the role of quantitative proteomics

, , , , & ORCID Icon
Pages 81-98 | Received 05 Sep 2023, Accepted 26 Dec 2023, Published online: 23 Feb 2024

References

  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291–1299. doi: 10.1093/annonc/mdv022
  • What are the risk factors for breast cancer? cdc.Gov: center for disease control and prevention (CDC). 2023 Jul 25 [cited 2023 Aug 22]. Available from: https://www.cdc.gov/cancer/breast/basic_info/risk_factors.htm
  • Wang L. Early diagnosis of breast cancer. Sensors. 2017;17(7):1572. doi: 10.3390/s17071572
  • Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors [research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Pediatr Clin North Am. 2013 Feb;60(1):49–74. doi: 10.1016/j.pcl.2012.10.002
  • Thompson P, Kadlubar F, Vena S, et al. Exfoliated ductal epithelial cells in human breast milk: a source of target tissue DNA for molecular epidemiologic studies of breast cancer. Cancer Epidemiol Biomarkers Prev. 1998;7(1):37–42.
  • Aslebagh R, Channaveerappa D, Arcaro KF, et al. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis. 2018;39(4):653–665. doi: 10.1002/elps.201700123
  • Aslebagh R, Whitham D, Channaveerappa D, et al. Mass spectrometry-based proteomics of human milk to identify differentially expressed proteins in women with breast cancer versus controls. Proteomes. 2022;10(4):36–53. doi: 10.3390/proteomes10040036
  • Aslebagh R, Channaveerappa D, Arcaro KF, et al. Comparative two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) of human milk to identify dysregulated proteins in breast cancer. Electrophoresis. 2018;39(14):1723–1734. doi: 10.1002/elps.201800025
  • Aslebagh R, Whitham D, Channaveerappa D, et al. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis. 2023;44(13–14):1097–1113. doi: 10.1002/elps.202300040
  • U.S._Preventive_Services_Task_Force. Screening for breast cancer, topic page. 2013. Available from: http://wwwuspreventiveservicestaskforceorg/uspstf/uspsbrcahtm
  • Elezaby M, Lees B, Maturen KE, et al. BRCA mutation carriers: breast and ovarian cancer screening guidelines and imaging considerations. Radiology. 2019;291(3):554–569. doi: 10.1148/radiol.2019181814
  • National_Cancer_Institute. SEER cancer statistics factsheets: breast cancer. 2013. Available from: http://seercancergov/statfacts/html/breasthtml
  • American_Cancer_Society. Breast cancer facts and figures 2013 -2014. 2013. Available from: http://wwwcancerorg/research/cancerfactsfigures/breastcancerfactsfigures/
  • Worldwide BC. Available from: http://wwwwcrforg/cancer_statistics/cancer_facts/women-breast-cancerphp
  • Gonzalez-Jimenez E, Garcia PA, Aguilar MJ, et al. Breastfeeding and the prevention of breast cancer: a retrospective review of clinical histories. J Clin Nurs. 2013 Aug 13;23(17–18):2397–2403. doi: 10.1111/jocn.12368
  • National_Cancer_Institute. Reproductive history and breast cancer risk. 2013. Available from: http://wwwcancergov/cancertopics/factsheet/Risk/reproductive-history
  • Nichols HB, Schoemaker MJ, Cai J, et al. Breast cancer risk after recent childbirth: a pooled analysis of 15 prospective studies. Ann internal med. 2018 Dec 11;170(1):22–30. doi: 10.7326/M18-1323
  • Borges VF, Schedin PJ. Pregnancy-associated breast cancer: an entity needing refinement of the definition [comment editorial]. Cancer. 2012 Jul 1;118(13):3226–8.
  • Callihan EB, Gao D, Jindal S, et al. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer [research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Breast Cancer Res Treat. 2013 Apr;138(2):549–559.
  • Levenson VV. Biomarkers for early detection of breast cancer: what, when, and where? Biochim Biophys Acta Gen Subj. 2007 Jun 01;1770(6):847–856.
  • Buehring GC. Screening for breast atypias using exfoliative cytology. Cancer. 1979;43(5):1788–1799. doi: 10.1002/1097-0142(197905)43:5<1788:AID-CNCR2820430532>3.0.CO;2-Z
  • Buehring GC, Letscher A, McGirr KM, et al. Presence of epithelial cells in nipple aspirate fluid is associated with subsequent breast cancer: a 25-year prospective study. Breast Cancer Res Treat. 2006 Jul 01;98(1):63–70. doi: 10.1007/s10549-005-9132-5
  • Holmquist DG, Papanicolaou GN. The exfoliative cytology of the mammary gland during pregnancy and lactation. Ann N Y Acad Sci. 1956;63(6):1422–1435. doi: 10.1111/j.1749-6632.1956.tb32147.x
  • Gann PH, Geiger AS, Helenowski IB, et al. Estrogen and progesterone levels in nipple aspirate fluid of healthy premenopausal women: relationship to steroid precursors and response proteins. Cancer Epidemiol Biomarkers Prev. 2006;15(1):39–44. doi: 10.1158/1055-9965.EPI-05-0470
  • Pawlik TM, Hawke DH, Liu Y, et al. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer. 2006 Mar 16;6(1):68–78. doi: 10.1186/1471-2407-6-68
  • Sauter ER. Analysis of nipple aspirate fluid for diagnosis of breast cancer: an alternative to invasive biopsy. Expert Rev Mol Diagn. 2005 Nov 1;5(6):873–881.
  • Jeschke U, Mylonas I, Shabani N, et al. Expression of sialyl lewis X, sialyl lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res. 2005;25(3A):1615–1622.
  • Nakayama Y, Torigoe T, Minagawa N, et al. The clinical usefulness of urinary N(1),N(12)-diacetylspermine (DiAcspm) levels as a tumor marker in patients with colorectal cancer. Oncol Lett. 2012;3(5):970–974. doi: 10.3892/ol.2012.625
  • Gönenç A, Erten D, Aslan S, et al. Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumor and benign breast disease. Cell Biol Int. 2006;30(4):376–380. doi: 10.1016/j.cellbi.2006.02.005
  • Sharipov F, Kireev G, Koloiarova N, et al. Peroxidation of serum lipids in patients with breast cancer. Klin Lab Diagn. 2003;5:13–15.
  • Silva J, Silva JM, García V, et al. RNA is more sensitive than DNA in identification of breast cancer patients bearing tumor nucleic acids in plasma. Genes Chrom Cancer. 2002;35(4):375–376. doi: 10.1002/gcc.10124
  • Chen X, Bonnefoi H, Diebold-Berger S, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res. 1999;5(9):2297–2303.
  • Silva J, Dominguez G, Villanueva M, et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer. 1999;80(8):1262–1264. doi: 10.1038/sj.bjc.6690495
  • Khakpour G, Pooladi A, Izadi P, et al. DNA methylation as a promising landscape: a simple blood test for breast cancer prediction. Tumor Biol. 2015 Jul 01;36(7):4905–4912. doi: 10.1007/s13277-015-3567-z
  • Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–1093. doi: 10.1038/nature05887
  • Browne EP, Punska EC, Lenington S, et al. Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy [research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Epigenetics Official J DNA Methylation Soc. 2011 Dec;6(12):1425–35.
  • Bell RJ. Screening mammography – early detection or over-diagnosis? Contribution from Australian data. Climacteric. 2014 Dec 01;17(sup2):66–72.
  • Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108(11):2205–2240. doi: 10.1038/bjc.2013.177
  • Mukhtar TK, Yeates DR, Goldacre MJ. Breast cancer mortality trends in England and the assessment of the effectiveness of mammography screening: population-based study. J R Soc Med. 2013;106(6):234–242. doi: 10.1177/0141076813486779
  • Zeeshan M, Salam B, Khalid QSB, et al. Diagnostic accuracy of digital mammography in the detection of breast cancer. Cureus. 2018;10(4):e2448–e2448. doi: 10.7759/cureus.2448
  • Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr. 2020;63(8):301. doi: 10.3345/cep.2020.00059
  • Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22(1):11–11. doi: 10.1186/s11658-017-0042-4
  • Bhat-Nakshatri P, Kumar B, Simpson E, et al. Breast cancer cell detection and characterization from breast milk-derived cells. Cancer Res. 2020;80(21):4828–4839. doi: 10.1158/0008-5472.CAN-20-1030
  • Cacho NT, Lawrence RM. Innate immunity and breast milk [review]. Front Immunol. 2017 May 29;8:854. doi: 10.3389/fimmu.2017.00584
  • Song Q, Zhang Y, Liu H, et al. Potential of using cell-free DNA and miRNA in breast milk to screen early breast cancer. Bio Med Res Int. 2020;2020:8126176–8126176. doi: 10.1155/2020/8126176
  • Yi DY, Kim SY. Human breast milk composition and function in human health: from nutritional components to microbiome and MicroRNAs. Nutrients. 2021;13(9):3094. doi: 10.3390/nu13093094
  • Picariello G, Ferranti P, Mamone G, et al. Gel-free shotgun proteomic analysis of human milk [research support, non-U.S. Gov’t]. J Chromatogr A. 2012 Mar 2;1227:219–33.
  • Roncada P, Stipetic LH, Bonizzi L, et al. Proteomics as a tool to explore human milk in health and disease [review]. J Proteomics. 2013 Aug 2;88:47–57.
  • Arcaro KF, Browne EP, Qin W, et al. Differential expression of cancer-related proteins in paired breast milk samples from women with breast cancer. J Hum Lact. 2012;28(4):543–546. doi: 10.1177/0890334412453205
  • Wong CM, Anderton DL, Smith-Schneider S, et al. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women [research support, non-U.S. Gov’t]. Epigenetics Official J DNA Methylation Soc. 2010 Oct 1;5(7):645–55. doi: 10.4161/epi.5.7.12961
  • Zweier C, de Jong EK, Zweier M, et al. CNTNAP2 and NRXN1 are mutated in autosomal-recessive pitt-hopkins-like mental retardation and determine the level of a common synaptic protein in drosophila [research support, non-U.S. Gov’t]. Am J Hum Genet. 2009 Nov;85(5):655–66.
  • Qin W, Zhang K, Kliethermes B, et al. Differential expression of cancer associated proteins in breast milk based on age at first full term pregnancy. BMC Cancer. 2012 Mar 21;12(1):1–9. doi: 10.1186/1471-2407-12-100
  • Schneider SS, Aslebagh R, Wetie AGN, et al. Using breast milk to assess breast cancer risk: the role of mass spectrometry-based proteomics. Adv Exp Med Biol. 2014;806:399–408. doi: 10.1007/978-3-319-06068-2_19
  • Stone WL, Leavitt L, Varacallo M Physiology, growth factor. 2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK442024/
  • Figueroa JD, Flanders KC, Garcia-Closas M, et al. Expression of TGF-β signaling factors in invasive breast cancers: relationships with age at diagnosis and tumor characteristics. Breast Cancer Res Treat. 2010 Jun 1;121(3):727–735. doi: 10.1007/s10549-009-0590-z
  • Yang HP, Schneider SS, Chisholm CM, et al. Association of TGF-β2 levels in breast milk with severity of breast biopsy diagnosis. Cancer Causes Control. 2015 Mar 1;26(3):345–354. doi: 10.1007/s10552-014-0498-8
  • Yun Y-R, Won JE, Jeon E, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;1(1):218142. doi: 10.4061/2010/218142
  • Bártková J, Burchell J, Bártek J, et al. Lack of β-Casein production by human breast tumours revealed by monoclonal antibodies. Eur J Cancer Clin Oncol. 1987 Sep 01;23(10):1557–1563. doi: 10.1016/0277-5379(87)90100-3
  • Bonuccelli G, Castello-Cros R, Capozza F, et al. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis. Cell Cycle. 2012 Nov 01;11(21):3972–3982. doi: 10.4161/cc.22227
  • Hassan MI, Waheed A, Yadav S, et al. Zinc α2-Glycoprotein: A Multidisciplinary Protein. Mol Cancer Res. 2008;6(6):892–906. doi: 10.1158/1541-7786.MCR-07-2195
  • Yamamura J, Miyoshi Y, Tamaki Y, et al. mRNA expression level of estrogen-inducible gene, α1-antichymotrypsin, is a predictor of early tumor recurrence in patients with invasive breast cancers. Cancer Sci. 2004;95(11):887–892. doi: 10.1111/j.1349-7006.2004.tb02198.x
  • Flavin R, Peluso S, Nguyen PL, et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6(4):551–562. doi: 10.2217/fon.10.11
  • Hammamieh R, Chakraborty N, Barmada M, et al. Expression patterns of fatty acid binding proteins in breast cancer cells. J Exp Ther Oncol. 2005;5(2):133–143.
  • Beretov J, Wasinger VC, Millar EKA, et al. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS One. 2015;10(11):e0141876–e0141876. doi: 10.1371/journal.pone.0141876
  • Chung L, Moore K, Phillips L, et al. Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer. Breast Cancer Res. 2014 Jun 16;16(3):R63. doi: 10.1186/bcr3676
  • Winden AWJ O-V, Krop EJM, Kåredal MH, et al. Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study. BMC Cancer. 2011 Aug 26;11(1):381. doi: 10.1186/1471-2407-11-381
  • Sauter ER, Lininger J, Magklara A, et al. Association of kallikrein expression in nipple aspirate fluid with breast cancer risk. Int J Cancer. 2004;108(4):588–591. doi: 10.1002/ijc.11607
  • Ernster VL, Barclay J. Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. JNCI Monogr. 1997;1997(22):151–156. doi: 10.1093/jncimono/1997.22.151
  • Apostolopoulos V, McKenzie I. Role of the mannose receptor in the immune response. Curr Mol Med. 2001;1(4):469–474. doi: 10.2174/1566524013363645
  • Garcia-Orad A, Arizti P, Durán L, et al. Alpha-1-antitrypsin phenotypes among breast cancer patients in the basque population. Hum Hered. 1994;44(4):203–208. doi: 10.1159/000154218
  • Jin Y, Wang W, Wang Q, et al. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int. 2022 Apr 19;22(1):156–168. doi: 10.1186/s12935-022-02572-4
  • XDH xanthine dehydrogenase national center for biotechnology information gene; [cited 2023 Jan 8]. Available from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=7498#top
  • Jensen-Urstad AP, Semenkovich CF. Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger?. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2012;1821(5):747–753. doi: 10.1016/j.bbalip.2011.09.017
  • Feingold KR, Grunfeld C. Introduction to lipids and lipoproteins. 2015. Available form: https://pubmed.ncbi.nlm.nih.gov/26247089/
  • Savarese M, Maggi L, Vihola A, et al. Interpreting genetic variants in Titin in patients with muscle disorders. JAMA Neurol. 2018;75(5):557–565. doi: 10.1001/jamaneurol.2017.4899
  • Maldonado-Valderrama J, Wilde P, Macierzanka A, et al. The role of bile salts in digestion. Adv Colloid Interface Sci. 2011 Jun 9;165(1):36–46. doi: 10.1016/j.cis.2010.12.002
  • Mohd Younus B, Tanveer Ali D, Laishram RS. Casein proteins: structural and functional aspects. In: Isabel G, editor. Milk proteins. Rijeka: IntechOpen; 2016. p. Ch. 1.
  • Chong BM, Reigan P, Mayle-Combs KD, et al. Determinants of adipophilin function in milk lipid formation and secretion. Trends Endocrinol Metab. 2011;22(6):211–217. doi: 10.1016/j.tem.2011.04.003
  • Yoshikawa K, Ishida M, Yanai H, et al. Adipophilin expression is an independent marker for poor prognosis of patients with triple-negative breast cancer: an immunohistochemical study. PLoS One. 2020;15(11):e0242563. doi: 10.1371/journal.pone.0242563
  • Moman RN, Gupta N, Varacallo M. Physiology, albumin StatPearls publishing. Treasure Island (FL): StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK459198/
  • Fujii T, Tokuda S, Nakazawa Y, et al. Implications of low serum albumin as a prognostic factor of long-term outcomes in patients with breast cancer. In Vivo. 2020;34(4):2033–2036. doi: 10.21873/invivo.12003
  • Pandrangi SL, Chittineedi P, Chikati R, et al. Role of lipoproteins in the pathophysiology of breast cancer. Membranes. 2022;12(5):532. doi: 10.3390/membranes12050532
  • Maran L, Hamid A, Hamid SBS, et al. Lipoproteins as markers for monitoring cancer progression. J Lipids. 2021;2021:1–17. doi: 10.1155/2021/8180424
  • Occhipinti R, Boron WF. Role of carbonic anhydrases and inhibitors in acid–base physiology: insights from mathematical modeling. Int J Mol Sci. 2019;20(15):3841. doi: 10.3390/ijms20153841
  • Mboge MY, Mahon BP, McKenna R, et al. Carbonic anhydrases: role in pH control and cancer. Metabolites. 2018;8(1):19. doi: 10.3390/metabo8010019
  • Avilán L, Gualdrón-López M, Quiñones W, et al. Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites—perspectives for its use as a therapeutic target. Enzyme Res. 2011;2011. doi: 10.4061/2011/932549
  • Schofield L, Lincz LF, Skelding KA. Unlikely role of glycolytic enzyme α-enolase in cancer metastasis and its potential as a prognostic biomarker. J Cancer Metastasis Treat. 2020;6:10. doi: 10.20517/2394-4722.2019.43
  • Xu S, Chen T, Dong L, et al. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol Lett. 2021;21(1):27. doi: 10.3892/ol.2020.12288
  • Yang S, Wang X, Cui L, et al. Compact conformations of human protein disulfide isomerase. PLoS One. 2014;9(8):e103472. doi: 10.1371/journal.pone.0103472
  • Yang S, Jackson C, Karapetyan E, et al. Roles of protein disulfide isomerase in breast cancer. Cancers (Basel). 2022;14(3):745. doi: 10.3390/cancers14030745
  • Liu B, Newburg DS. Human milk glycoproteins protect infants against human pathogens. Breast Feeding Med. 2013;8(4):354–362. doi: 10.1089/bfm.2013.0016
  • Durán-Jara E, Vera-Tobar T, Lobos-González LDL. Lactadherin: from a well-known breast tumor marker to a possible player in extracellular vesicle-mediated cancer progression. Int J Mol Sci. 2022;23(7):3855. doi: 10.3390/ijms23073855
  • Kovacs L, Cabral P, Chammas R, et al. Mannose receptor 1 expression does not determine the uptake of high-density mannose dendrimers by activated macrophages populations. PLoS One. 2020;15(10):e0240455. doi: 10.1371/journal.pone.0240455
  • Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001 Feb 01;11(1):39–46.
  • Jen J, Wang Y-C. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23(1):1–9. doi: 10.1186/s12929-016-0269-9
  • Hamrita B, Chahed K, Trimeche M, et al. Proteomics-based identification of α1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas. Clinica Chimica Acta. 2009 Jun 27;404(2):111–118. doi: 10.1016/j.cca.2009.03.033
  • Benaïssa M, Peyrat J-P, Hornez L, et al. Expression and prognostic value of lactoferrin mRNA isoforms in human breast cancer. Int J Cancer. 2005;114(2):299–306. doi: 10.1002/ijc.20728
  • PMd S, Magalhães PDOE. Application of microbial α-amylase in industry - a review. Braz J Microbiol. 2010;41(4):850–861. doi: 10.1590/S1517-83822010000400004
  • Pierzynowska K, Thomasson S, Oredsson S, et al. Alpha-amylase inhibits cell proliferation and glucose uptake in human neuroblastoma cell lines. Bio Med Res Int. 2022 Jul 25;2022:1–11. doi: 10.1155/2022/4271358
  • Kawakita T, Sasaki H, Hoshiba T, et al. Amylase-producing ovarian carcinoma: a case report and a retrospective study. Gynecol Oncol Case Rep. 2012;2(3):112. doi: 10.1016/j.gynor.2012.06.002
  • FABP3 fatty acid binding protein 3 [Homo sapiens (human)] National Center for Biotechnology Information (NCBI) gene. National Institute of Health; 2023 Jun 26 [cited 2023 Aug 7]. Available from: https://www.ncbi.nlm.nih.gov/gene/2170
  • Smith B. SDS polyacrylamide gel electrophoresis of proteins. Methods Mol Biol. 1984;1:41–55. doi: https://doi.org/10.1385/0-89603-062-8:41
  • Magdeldin S, Enany S, Yoshida Y, et al. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11(1):16–16. doi: 10.1186/1559-0275-11-16
  • Aslebagh R, Channaveerappa D, Pentecost BT, et al. Combinatorial electrophoresis and mass spectrometry-based proteomics in breast milk for breast cancer biomarker discovery. In: Woods A Darie C, editors. Advancements of mass spectrometry in biomedical research. Cham: Springer International Publishing; 2019. p. 451–467.
  • Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys. 2011;40(1):169–186. doi: 10.1146/annurev-biophys-042910-155359
  • Gunning PW, Hardeman EC. Fundamental differences. Elife. 2018;7:e34477. doi: 10.7554/eLife.34477
  • Zhang Y, Tian J, Qu C, et al. Overexpression of SERPINA3 promotes tumor invasion and migration, epithelial-mesenchymal-transition in triple-negative breast cancer cells. Breast Cancer. 2021;28(4):859–873. doi: 10.1007/s12282-021-01221-4
  • He Y, Chen J, Ma Y, et al. Apolipoproteins: new players in cancers [review]. Front Pharmacol. 2022 Nov 25;13. doi: 10.3389/fphar.2022.1051280
  • Ren L, Yi J, Li W, et al. Apolipoproteins and cancer. Cancer Med. 2019;8(16):7032–7043. doi: 10.1002/cam4.2587
  • Jankovic-Karasoulos T, Bianco-Miotto T, Butler MS, et al. Elevated levels of tumour apolipoprotein D independently predict poor outcome in breast cancer patients. Histopathology. 2020;76(7):976–987. doi: 10.1111/his.14081
  • Seve P, Ray‐Coquard I, Trillet‐Lenoir V, et al. Low serum albumin levels and liver metastasis are powerful prognostic markers for survival in patients with carcinomas of unknown primary site. Cancer: Interdiscip Int J Am Cancer Soc. 2006;107(11):2698–2705. doi: 10.1002/cncr.22300
  • Qasba PK, Kumar S, Brew K. Molecular divergence of Lysozymes and α-lactalbumin. Crit Rev Biochem Mol Biol. 1997 Jan 1;32(4):255–306.
  • Aristarco V, Johansson H, Gandini S, et al. Association of vitamin D receptor and vitamin D-Binding protein polymorphisms with familial breast cancer prognosis in a mono-institutional cohort. Nutrients. 2021;13(4):1208. doi: 10.3390/nu13041208
  • Li X, Han M, Zhang H, et al. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res. 2022 Jan 9;10(1):1–13. doi: 10.1186/s40364-021-00345-1
  • van der Zande HJP, Nitsche D, Schlautmann L, et al. The mannose receptor: from endocytic receptor and biomarker to regulator of (meta)inflammation [review]. Front Immunol. 2021 Oct 14;12:12.
  • Xu Z-J, Gu Y, Wang C-Z, et al. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology. 2020 Jan 1;9(1):1683347. doi: 10.1080/2162402X.2019.1683347
  • Cummings RD. The mannose receptor ligands and the macrophage glycome. Curr Opin Struct Biol. 2022 Aug 1;75:102394. doi: 10.1016/j.sbi.2022.102394
  • Movahedi K, Schoonooghe S, Laoui D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165–4177. doi: 10.1158/0008-5472.CAN-11-2994
  • Sturge J, Todd SK, Kogianni G, et al. Mannose receptor regulation of macrophage cell migration. J Leukoc Biol. 2007;82(3):585–593. doi: 10.1189/jlb.0107053
  • Izdebska M, Zielińska W, Hałas-Wiśniewska M, et al. Involvement of actin and actin-binding proteins in carcinogenesis. Cells. 2020;9(10):2245. doi: 10.3390/cells9102245
  • FABP3 genecards.org: Gene cards; [ cited 2023 Jan 8]. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FABP3
  • Tang Z, Shen Q, Xie H, et al. Elevated expression of FABP3 and FABP4 cooperatively correlates with poor prognosis in non-small cell lung cancer (NSCLC). Oncotarget. 2016;7(29):46253–46262. doi: 10.18632/oncotarget.10086
  • Peroni DG, Fanos V. Lactoferrin is an important factor when breastfeeding and COVID-19 are considered. Acta Paediatrica. 2020;109(10):2139–2140. doi: 10.1111/apa.15417
  • Gopal SH, Das SK. Role of lactoferrin in the carcinogenesis of triple-negative breast cancer. J Cancer Clin Trials. 2016;Aug;1(3):e105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470622/
  • Ferraboschi P, Ciceri S, Grisenti P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics. 2021;10(12):1534. doi: 10.3390/antibiotics10121534
  • Vizoso F, Plaza E, Vázquez J, et al. Lysozyme expression by breast carcinomas, correlation with clinicopathologic parameters, and prognostic significance. Ann Surg Oncol. 2001 Sep 01;8(8):667–674. doi: 10.1007/s10434-001-0667-3
  • Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochimica et biophysica acta (bba)-molecular and cell biology of lipids. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2017;1862(10):1221–1232. doi: 10.1016/j.bbalip.2017.07.009
  • Zhang X, Su L, Sun K. Expression status and prognostic value of the perilipin family of genes in breast cancer. Am J Transl Res. 2021;13(5):4450–4463.
  • Xie X, Tang Y, Sheng J, et al. Titin mutation is associated with tumor mutation burden and promotes antitumor immunity in lung squamous cell carcinoma [original research]. Front Cell Dev Biol. 2021 Oct 21;9. doi: 10.3389/fcell.2021.761758
  • Lin Z, Xie Y-Z, Zhao M-C, et al. Xanthine dehydrogenase as a prognostic biomarker related to tumor immunology in hepatocellular carcinoma. Cancer Cell Int. 2021 Sep 08;21(1):475. doi: 10.1186/s12935-021-02173-7
  • Battelli MG, Polito L, Bortolotti M, et al. Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med. 2016;5(3):546–557. doi: 10.1002/cam4.601
  • Wei X, Liu X, Tan C, et al. Expression and function of zinc-α2-glycoprotein. Neurosci Bull. 2019;35(3):540–550. doi: 10.1007/s12264-018-00332-x
  • Delort L, Perrier S, Dubois V, et al. Zinc-α2-glycoprotein: a proliferative factor for breast cancer? In vitro study and molecular mechanisms. Oncol Rep. 2013 May 01;29(5):2025–2029. doi: 10.3892/or.2013.2311
  • Zhou Z, Sun B, Nie A, et al. Roles of aminoacyl-tRNA synthetases in cancer. Front Cell Dev Biol. 2020;8:599765. doi: 10.3389/fcell.2020.599765
  • Gajbhiye A, Dabhi R, Taunk K, et al. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics. Proteomics. 2016;16(17):2403–2418. doi: 10.1002/pmic.201600015
  • Neagu A-N, Whitham D, Buonanno E, et al. Proteomics and its applications in breast cancer. Am J Cancer Res. 2021;11(9):4006–4049.
  • Jiao C, Cui L, Ma A, et al. Elevated serum levels of retinol-binding protein 4 are associated with breast cancer risk: a case-control study. PLoS One. 2016;11(12):e0167498–e0167498. doi: 10.1371/journal.pone.0167498
  • Piktel E, Levental I, Durnaś B, et al. Plasma gelsolin: indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int J Mol Sci. 2018;19(9):2516. doi: 10.3390/ijms19092516
  • K-M L, Nam K, Oh S, et al. Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res. 2014 Dec 11;16(6):479. doi: 10.1186/s13058-014-0479-6
  • Pellicani R, Poletto E, Andreuzzi E, et al. Multimerin-2 maintains vascular stability and permeability. Matrix Biol. 2020 May 01;87:11–25.
  • Chakraborty S, Lakshmanan M, Swa HLF, et al. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun. 2015;6(1):6184–6184. doi: 10.1038/ncomms7184
  • Dey KK, Wang H, Niu M, et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics. 2019;16(1):16. doi: 10.1186/s12014-019-9237-1
  • Duffy MJ. Serum tumor markers in breast cancer: are they of clinical value? Clin Chem. 2006;52(3):345–351. doi: 10.1373/clinchem.2005.059832
  • Mishra S, Sharma D, Sharma P. Studies of biochemical parameters in breast cancer with and without metastasis. Indian J Clin Biochem. 2004;19(1):71–75. doi: 10.1007/BF02872394
  • Villanueva J, Shaffer DR, Philip J, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Investig. 2006;116(1):271–284. doi: 10.1172/JCI26022
  • Eleni Z, Athanasios KA, Aggeliki P, et al. Serum proteomic signatures of male breast cancer. Cancer Genomics - Proteomics. 2019;16(2):129. doi: 10.21873/cgp.20118
  • Yao F, Yan C, Zhang Y, et al. Identification of blood protein biomarkers for breast cancer staging by integrative transcriptome and proteome analyses. J Proteomics. 2021 Jan 06;230:103991.
  • Nakata B, Ogawa Y, Ishikawa T, et al. Serum CYFRA 21-1 is one of the most reliable tumor markers for breast carcinoma [comparative study]. Cancer. 2000 Sep 15;89(6):1285–90. doi: 10.1002/1097-0142(20000915)89:6<1285:AID-CNCR13>3.0.CO;2-G
  • Sone K, Oguri T, Nakao M, et al. CYFRA 21-1 as a predictive marker for non-small cell lung cancer treated with pemetrexed-based chemotherapy. Anticancer Res. 2017 Feb;37(2):935–939.
  • Suh EJ, Kabir MH, Kang U-B, et al. Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers. Exp Mol Med. 2012;44(1):36–44. doi: 10.3858/emm.2012.44.1.003
  • Veyssière H, Bidet Y, Penault-Llorca F, et al. Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin Proteomics. 2022 Jul 11;19(1):25. doi: 10.1186/s12014-022-09362-0
  • Chen IH, Xue L, Hsu CC, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer [research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Proc Natl Acad Sci USA. 2017 Mar 21;114(12):3175–3180. doi: 10.1073/pnas.1618088114
  • Kaczor-Urbanowicz KE, Wong DTW. 4 - proteomics. In: Sonis S, and Villa A, editors Translational systems medicine and oral disease. Cambridge, Massachusetts: Academic Press; 2020. p. 93–118.
  • Jing X, Liang H, Hao C, et al. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep. 2019 Feb;41(2):801–810.
  • Zhang X, Ren D, Guo L, et al. Thymosin beta 10 is a key regulator of tumorigenesis and metastasis and a novel serum marker in breast cancer [research support, non-U.S. Gov’t]. Breast Cancer Res. 2017 Feb 8;19(1):15. doi: 10.1186/s13058-016-0785-2
  • Shao MM, Chan SK, Yu AM, et al. Keratin expression in breast cancers. Virchows Arch. 2012 Sep;461(3):313–322.
  • Gusterson BA, Ross DT, Heath VJ, et al. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 2005;7(4):1–6. doi: 10.1186/bcr1041
  • Golks A, Guerini D. The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. ‘Protein modifications: beyond the usual suspects’ review series [review]. EMBO Rep. 2008 Aug;9(8):748–753. doi: 10.1038/embor.2008.129
  • Alhammad R. Bioinformatics identification of TUBB as potential prognostic biomarker for worse prognosis in ERα-positive and better prognosis in ERα-negative breast cancer. Diagnostics. 2022;12(9):2067. doi: 10.3390/diagnostics12092067
  • Chung L, Shibli S, Moore K, et al. Tissue biomarkers of breast cancer and their association with conventional pathologic features. Br J Cancer. 2013 Feb 1;108(2):351–360. doi: 10.1038/bjc.2012.552
  • Liang S, Singh M, Gam L-H. The differential expression of aqueous soluble proteins in breast normal and cancerous tissues in relation to ethnicity of the patients; Chinese, Malay and Indian. Dis Markers. 2010;28(3):149–165. doi: 10.1155/2010/704630
  • Beck M, Claassen M, Aebersold R. Comprehensive proteomics. Curr Opin Biotechnol. 2011 Feb 01;22(1):3–8.
  • Al-Amrani S, Al-Jabri Z, Al-Zaabi A, et al. Proteomics: concepts and applications in human medicine. World J Biol Chem. 2021;12(5):57–69. doi: 10.4331/wjbc.v12.i5.57
  • Foreman RE, George AL, Reimann F, et al. Peptidomics: a review of clinical applications and methodologies. J Proteome Res. 2021 Aug 06;20(8):3782–3797. doi: 10.1021/acs.jproteome.1c00295
  • Jin H, Zangar RC. Protein modifications as potential biomarkers in breast cancer. Biomark Insights. 2009 Nov 30;4:191–200. doi: 10.4137/BMI.S2557
  • Li W, Li F, Zhang X, et al. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Ther. 2021 Dec 20;6(1):422. doi: 10.1038/s41392-021-00825-8
  • Fu M, Wang C, Zhang X, et al. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol. 2004 Sep 15;68(6):1199–1208. doi: 10.1016/j.bcp.2004.05.037
  • Ennour-Idrissi K, Dragic D, Issa E, et al. DNA methylation and breast cancer risk: an epigenome-wide study of normal breast tissue and blood. Cancers (Basel). 2020;12(11):3088. doi: 10.3390/cancers12113088
  • Huang M-L, Shen G-T, Li N-L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J Clin Cases. 2022;10(32):11690–11701. doi: 10.12998/wjcc.v10.i32.11690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.