0
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteomic investigations of dengue virus infection: key discoveries over the last 10 years

&
Received 19 May 2023, Accepted 12 Jul 2024, Published online: 24 Jul 2024

References

  • Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol. 2021;67(10):687–702. doi: 10.1139/cjm-2020-0572
  • Guo C, Zhou Z, Wen Z, et al. Global epidemiology of dengue outbreaks in 1990-2015: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2017;7:317. doi: 10.3389/fcimb.2017.00317
  • Diamond MS, Pierson TC. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. 2015;162(3):488–492. doi: 10.1016/j.cell.2015.07.005
  • Zeng Z, Zhan J, Chen L, et al. Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017. EClinicalMedicine. 2021;32:100712. doi: 10.1016/j.eclinm.2020.100712
  • Burki T. Bangladesh faces record dengue outbreak. Lancet. 2023;402(10400):439. doi: 10.1016/S0140-6736(23)01610-0
  • Bagcchi S. Nepal faces an outbreak of dengue. Lancet Infect Dis. 2023;23(1):35. doi: 10.1016/S1473-3099(22)00821-0
  • Munayco CV, Valderrama Rosales BY, Mateo Lizarbe SY, et al. Notes from the Field: Dengue Outbreak - Peru, 2023. MMWR Morb Mortal Wkly Rep. 2024;73(4):86–88. doi: 10.15585/mmwr.mm7304a4
  • Nabeshima T, Ngwe Tun MM, Thuy NTT, et al. An outbreak of a novel lineage of dengue virus 2 in Vietnam in 2022. J Med Virol. 2023;95(11):e29255. doi: 10.1002/jmv.29255
  • Marczell K, Garcia E, Roiz J, et al. The macroeconomic impact of a dengue outbreak: case studies from Thailand and Brazil. PloS Negl Trop Dis. 2024;18(6):e0012201. doi: 10.1371/journal.pntd.0012201
  • Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Primers. 2016;2(1):16055. doi: 10.1038/nrdp.2016.55
  • Wan SW, Wu-Hsieh BA, Lin YS, et al. The monocyte-macrophage-mast cell axis in dengue pathogenesis. J Biomed Sci. 2018;25(1):77. doi: 10.1186/s12929-018-0482-9
  • Perera N, Brun J, Alonzi DS, et al. Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Res. 2022;199:105269. doi: 10.1016/j.antiviral.2022.105269
  • Helgers LC, Keijzer NCH, van Hamme JL, et al. Dengue Virus Infects Human Skin Langerhans Cells through Langerin for Dissemination to Dendritic Cells. J Invest Dermatol. 2024;144(5):1099–1111.e3. doi: 10.1016/j.jid.2023.09.287
  • Meuren LM, Prestes EB, Papa MP, et al. Infection of endothelial cells by dengue virus induces ROS production by different sources affecting virus replication, cellular activation, death and vascular permeability. Front Immunol. 2022;13:810376. doi: 10.3389/fimmu.2022.810376
  • Chumchanchira C, Ramphan S, Sornjai W, et al. Glycolysis is reduced in dengue virus 2 infected liver cells. Sci Rep. 2024;14(1):8355. doi: 10.1038/s41598-024-58834-w
  • Chatel-Chaix L, Fischl W, Scaturro P, et al. A combined genetic-proteomic approach identifies residues within dengue virus NS4B critical for interaction with NS3 and viral replication. J Virol. 2015;89(14):7170–7186. doi: 10.1128/JVI.00867-15
  • Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health. 2011;39(4 Suppl):S37–S43. doi: 10.2149/tmh.2011-S03
  • Sinha S, Singh K, Ravi Kumar YS, et al. Dengue virus pathogenesis and host molecular machineries. J Biomed Sci. 2024;31(1):43. doi: 10.1186/s12929-024-01030-9
  • Khan MB, Yang ZS, Lin CY, et al. Dengue overview: an updated systemic review. J Infect Public Health. 2023;16(10):1625–1642. doi: 10.1016/j.jiph.2023.08.001
  • Wang WH, Urbina AN, Chang MR, et al. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect. 2020;53(6):963–978. doi: 10.1016/j.jmii.2020.03.007
  • Vijay J, Anuradha N, Anbalagan VP. Clinical presentation and platelet profile of dengue fever: a retrospective study. Cureus. 2022;14(8):e28626. doi: 10.7759/cureus.28626
  • Muller DA, Depelsenaire AC, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis. 2017;215(suppl_2):S89–S95. doi: 10.1093/infdis/jiw649
  • Lima MRQ, Nunes PCG, Dos Santos FB. Serological diagnosis of dengue. Methods Mol Biol. 2022;2409:173–196.
  • Meng JX, Hu QM, Zhang LM, et al. Isolation and genetic evolution of dengue virus from the 2019 outbreak in Xishuangbanna, Yunnan Province, China. Vector Borne Zoonotic Dis. 2023;23(6):331–340. doi: 10.1089/vbz.2022.0091
  • Ngwe Tun MM, Muthugala R, Nabeshima T, et al. Complete genome analysis and characterization of neurotropic dengue virus 2 cosmopolitan genotype isolated from the cerebrospinal fluid of encephalitis patients. PLOS ONE. 2020;15(6):e0234508. doi: 10.1371/journal.pone.0234508
  • Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–355. doi: 10.1038/nature19949
  • Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020;34(1):e4633. doi: 10.1002/bmc.4633
  • Cassidy L, Kaulich PT, Maass S, et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics. 2021;21(23–24):e2100008. doi: 10.1002/pmic.202100008
  • Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22(7):2151–2171. doi: 10.1021/acs.jproteome.2c00838
  • Noor Z, Ahn SB, Baker MS, et al. Mass spectrometry-based protein identification in proteomics-a review. Brief Bioinform. 2021;22(2):1620–1638. doi: 10.1093/bib/bbz163
  • Muliawan SY, Kit LS, Devi S, et al. Inhibitory potential of Quercus lusitanica extract on dengue virus type 2 replication. Southeast Asian J Trop Med Public Health. 2006;37 Suppl 3:132–135.
  • Noisakran S, Sengsai S, Thongboonkerd V, et al. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein. Biochem Biophys Res Commun. 2008;372(1):67–72. doi: 10.1016/j.bbrc.2008.04.165
  • Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11(4):369–377. doi: 10.1016/j.mib.2008.06.004
  • Khan AM, Miotto O, Nascimento EJ, et al. Conservation and variability of dengue virus proteins: implications for vaccine design. PLOS Negl Trop Dis. 2008;2(8):e272. doi: 10.1371/journal.pntd.0000272
  • Prusis P, Lapins M, Yahorava S, et al. Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases. Bioorg Med Chem. 2008;16(20):9369–9377. doi: 10.1016/j.bmc.2008.08.081
  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, et al. Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release. Mol Biosyst. 2010;6(5):795–806. doi: 10.1039/b923864f
  • Paingankar MS, Gokhale MD, Deobagkar DN. Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol. 2010;155(9):1453–1461. doi: 10.1007/s00705-010-0728-7
  • Khadka S, Vangeloff AD, Zhang C, et al. A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics. 2011;10(12):M111 012187. doi: 10.1074/mcp.M111.012187
  • Le Breton M, Meyniel-Schicklin L, Deloire A, et al. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol. 2011;11(1):234. doi: 10.1186/1471-2180-11-234
  • Pattanakitsakul SN, Rungrojcharoenkit K, Kanlaya R, et al. Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res. 2007;6(12):4592–4600. doi: 10.1021/pr070366b
  • Sirot LK, Poulson RL, McKenna MC, et al. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol. 2008;38(2):176–189. doi: 10.1016/j.ibmb.2007.10.007
  • Higa LM, Caruso MB, Canellas F, et al. Secretome of HepG2 cells infected with dengue virus: implications for pathogenesis. Biochim Biophys Acta. 2008;1784(11):1607–1616. doi: 10.1016/j.bbapap.2008.06.015
  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, et al. Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. J Proteome Res. 2009;8(5):2551–2562. doi: 10.1021/pr900060g
  • Albuquerque LM, Trugilho MR, Chapeaurouge A, et al. Two-dimensional difference gel electrophoresis (DiGE) analysis of plasmas from dengue fever patients. J Proteome Res. 2009;8(12):5431–5441. doi: 10.1021/pr900236f
  • Pattanakitsakul SN, Poungsawai J, Kanlaya R, et al. Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells. J Proteome Res. 2010;9(9):4640–4648. doi: 10.1021/pr100357f
  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, et al. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res. 2010;9(10):4960–4971. doi: 10.1021/pr100219y
  • Tchankouo-Nguetcheu S, Khun H, Pincet L, et al. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses. PLOS ONE. 2010;5(10):e13149. doi: 10.1371/journal.pone.0013149
  • Lin YS, Yeh TM, Lin CF, et al. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood). 2011;236(5):515–523. doi: 10.1258/ebm.2011.010339
  • Poungsawai J, Kanlaya R, Pattanakitsakul SN, et al. Subcellular localizations and time-course expression of dengue envelope and non-structural 1 proteins in human endothelial cells. Microb Pathog. 2011;51(3):225–229. doi: 10.1016/j.micpath.2011.04.011
  • Patramool S, Surasombatpattana P, Luplertlop N, et al. Proteomic analysis of an Aedes albopictus cell line infected with dengue serotypes 1 and 3 viruses. Parasit Vectors. 2011;4(1):138. doi: 10.1186/1756-3305-4-138
  • Mishra KP, Shweta S, Diwaker D, et al. Dengue virus infection induces upregulation of hn RNP-H and PDIA3 for its multiplication in the host cell. Virus Res. 2012;163(2):573–579. doi: 10.1016/j.virusres.2011.12.010
  • Testa JS, Shetty V, Sinnathamby G, et al. Conserved MHC class I-presented dengue virus epitopes identified by immunoproteomics analysis are targets for cross-serotype reactive T-cell response. J Infect Dis. 2012;205(4):647–655. doi: 10.1093/infdis/jir814
  • Wang J, Fan P, Wei Y, et al. Isobaric tags for relative and absolute quantification-based proteomic analysis of host-pathogen protein interactions in the midgut of Aedes albopictus during dengue virus infection. Front Microbiol. 2022;13:990978. doi: 10.3389/fmicb.2022.990978
  • Garishah FM, Boahen CK, Vadaq N, et al. Longitudinal proteomic profiling of the inflammatory response in dengue patients. PloS Negl Trop Dis. 2023;17(1):e0011041. doi: 10.1371/journal.pntd.0011041
  • Alsaiari AA, Hakami MA, Alotaibi BS, et al. Rational design of multi-epitope-based vaccine by exploring all dengue virus serotypes proteome: an immunoinformatic approach. Immunol Res. 2024;72(2):242–259. doi: 10.1007/s12026-023-09429-6
  • Zhang M, Zheng X, Wu Y, et al. Differential proteomics of Aedes albopictus salivary gland, midgut and C6/36 cell induced by dengue virus infection. Virology. 2013;444(1–2):109–118. doi: 10.1016/j.virol.2013.06.001
  • Shrinet J, Srivastava P, Kumar A, et al. Differential proteome analysis of chikungunya virus and dengue virus coinfection in Aedes mosquitoes. J Proteome Res. 2018;17(10):3348–3359. doi: 10.1021/acs.jproteome.8b00211
  • Chisenhall DM, Londono BL, Christofferson RC, et al. Effect of dengue-2 virus infection on protein expression in the salivary glands of Aedes aegypti mosquitoes. Am J Trop Med Hyg. 2014;90(3):431–437. doi: 10.4269/ajtmh.13-0412
  • Chisenhall DM, Christofferson RC, McCracken MK, et al. Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasit Vectors. 2014;7(1):252. doi: 10.1186/1756-3305-7-252
  • Chowdhury A, Modahl CM, Misse D, et al. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep. 2021;11(1):23696. doi: 10.1038/s41598-021-03211-0
  • Osorio J, Villa-Arias S, Camargo C, et al. wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Commun Biol. 2023;6(1):865. doi: 10.1038/s42003-023-05180-8
  • Rainey SM, Geoghegan V, Lefteri DA, et al. Differences in proteome perturbations caused by the wolbachia strain wAu suggest multiple mechanisms of wolbachia-mediated antiviral activity. Sci Rep. 2023;13(1):11737. doi: 10.1038/s41598-023-38127-4
  • Kojin BB, Jakes E, Biedler JK, et al. Partial masculinization of Aedes aegypti females by conditional expression of Nix. PLOS Negl Trop Dis. 2022;16(7):e0010598. doi: 10.1371/journal.pntd.0010598
  • Subbaraman N. Science snipes at Oxitec transgenic-mosquito trial. Nat Biotechnol. 2011;29(1):9–11. doi: 10.1038/nbt0111-9a
  • Uno N, Ross TM. Dengue virus and the host innate immune response. Emerg Microbes Infect. 2018;7(1):167. doi: 10.1038/s41426-018-0168-0
  • Ngono AE, Shresta S. Immune Response to Dengue and Zika. Annu Rev Immunol. 2018;36(1):279–308. doi: 10.1146/annurev-immunol-042617-053142
  • Lee MF, Voon GZ, Lim HX, et al. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol. 2022;12:1004608. doi: 10.3389/fcimb.2022.1004608
  • Narayan R, Tripathi S. Intrinsic ADE: the dark side of antibody dependent enhancement during dengue infection. Front Cell Infect Microbiol. 2020;10:580096. doi: 10.3389/fcimb.2020.580096
  • Ma Y, Li M, Xie L, et al. Seroepidemiologic study on convalescent sera from dengue fever patients in Jinghong, Yunnan. Virol Sin. 2022;37(1):19–29. doi: 10.1016/j.virs.2021.12.001
  • Lee PX, Ong LC, Libau EA, et al. Relative contribution of dengue IgG antibodies acquired during gestation or breastfeeding in mediating dengue disease Enhancement and protection in type I interferon receptor-deficient mice. PloS Negl Trop Dis. 2016;10(6):e0004805. doi: 10.1371/journal.pntd.0004805
  • Teo A, Tan HD, Loy T, et al. Understanding antibody-dependent enhancement in dengue: are afucosylated IgG1s a concern? PLOS Pathog. 2023;19(3):e1011223. doi: 10.1371/journal.ppat.1011223
  • Simmons CP, Chau TN, Thuy TT, et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J Infect Dis. 2007;196(3):416–424. doi: 10.1086/519170
  • Thomas S, Smatti MK, Ouhtit A, et al. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol. 2022;152:172–182. doi: 10.1016/j.molimm.2022.11.010
  • Thulin NK, Brewer RC, Sherwood R, et al. Maternal Anti-dengue IgG fucosylation predicts susceptibility to dengue disease in infants. Cell Rep. 2020;31(6):107642. doi: 10.1016/j.celrep.2020.107642
  • Oosterhoff JJ, Larsen MD, van der Schoot CE, et al. Afucosylated IgG responses in humans - structural clues to the regulation of humoral immunity. Trends Immunol. 2022;43(10):800–814. doi: 10.1016/j.it.2022.08.001
  • Wang TT, Sewatanon J, Memoli MJ, et al. IgG antibodies to dengue enhanced for FcgammaRIIIA binding determine disease severity. Science. 2017;355(6323):395–398. doi: 10.1126/science.aai8128
  • Yang Y, Qiao L. Data-independent acquisition proteomics methods for analyzing post-translational modifications. Proteomics. 2023;23(7–8):e2200046. doi: 10.1002/pmic.202200046
  • Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics. 2021;20:100029. doi: 10.1074/mcp.R120.002277
  • Trugilho MRO, Hottz ED, Brunoro GVF, et al. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLOS Pathog. 2017;13(5):e1006385. doi: 10.1371/journal.ppat.1006385
  • Arioz BI, Cotuk A, Yaka EC, et al. Proximity extension assay-based proteomics studies in neurodegenerative disorders and multiple sclerosis. Eur J Neurosci. 2024;59(6):1348–1358. doi: 10.1111/ejn.16226
  • Lamy R, Ma’ayeh S, Chlamydas S, et al. Proximity extension assay (PEA) platform to detect vitreous biomarkers of diabetic retinopathy. Methods Mol Biol. 2023;2678:135–145.
  • Oktarianti R, Senjarini K, Hayano T, et al. Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti. J Infect Public Health. 2015;8(6):575–582. doi: 10.1016/j.jiph.2015.04.022
  • Gavor E, Choong YK, Liu Y, et al. Identification of Aedes aegypti salivary gland proteins interacting with human immune receptor proteins. PLOS Negl Trop Dis. 2022;16(9):e0010743. doi: 10.1371/journal.pntd.0010743
  • Modhiran N, Watterson D, Muller DA, et al. Dengue virus NS1 protein activates cells via toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med. 2015;7(304):304ra142. doi: 10.1126/scitranslmed.aaa3863
  • Berthoux L. The restrictome of flaviviruses. Virol Sin. 2020;35(4):363–377. doi: 10.1007/s12250-020-00208-3
  • Valdez F, Salvador J, Palermo PM, et al. Schlafen 11 Restricts Flavivirus Replication. J Virol. 2019;93(15):e00104–00119. doi: 10.1128/JVI.00104-19
  • Chemudupati M, Kenney AD, Bonifati S, et al. From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim Biophys Acta Mol Cell Res. 2019;1866(3):382–394. doi: 10.1016/j.bbamcr.2018.09.012
  • Giovannoni F, Damonte EB, Garcia CC, et al. Cellular promyelocytic leukemia protein is an important dengue virus restriction factor. PLOS ONE. 2015;10(5):e0125690. doi: 10.1371/journal.pone.0125690
  • Giovannoni F, Ladelfa MF, Monte M, et al. Dengue Non-structural Protein 5 Polymerase Complexes With Promyelocytic Leukemia Protein (PML) Isoforms III and IV to Disrupt PML-nuclear bodies in infected cells. Front Cell Infect Microbiol. 2019;9:284. doi: 10.3389/fcimb.2019.00284
  • Carpp LN, Rogers RS, Moritz RL, et al. Quantitative proteomic analysis of host-virus interactions reveals a role for golgi brefeldin a resistance factor 1 (GBF1) in dengue infection. Mol Cell Proteomics. 2014;13(11):2836–2854. doi: 10.1074/mcp.M114.038984
  • Shah PS, Link N, Jang GM, et al. Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell. 2018;175(7):1931–1945 e1918. doi: 10.1016/j.cell.2018.11.028
  • De Maio FA, Risso G, Iglesias NG, et al. The Dengue Virus NS5 Protein Intrudes in the cellular spliceosome and modulates splicing. PLOS Pathog. 2016;12(8):e1005841. doi: 10.1371/journal.ppat.1005841
  • Dechtawewat T, Paemanee A, Roytrakul S, et al. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells. Biochim Biophys Acta. 2016;1864(9):1270–1280. doi: 10.1016/j.bbapap.2016.04.008
  • Rabelo K, Trugilho MRO, Costa SM, et al. The effect of the dengue non-structural 1 protein expression over the HepG2 cell proteins in a proteomic approach. J Proteomics. 2017;152:339–354. doi: 10.1016/j.jprot.2016.11.001
  • Martinez-Betancur V, Marin-Villa M, Martinez-Gutierrez M. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. J Med Virol. 2014;86(8):1448–1458. doi: 10.1002/jmv.23857
  • Zhai LH, Chen KF, Hao BB, et al. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin. 2022;43(12):3112–3129. doi: 10.1038/s41401-022-01017-y
  • Bagwan N, El Ali HH, Lundby A. Proteome-wide profiling and mapping of post translational modifications in human hearts. Sci Rep. 2021;11(1):2184. doi: 10.1038/s41598-021-81986-y
  • Schor S, Pu S, Nicolaescu V, et al. The cargo adapter protein CLINT1 is phosphorylated by the numb-associated kinase BIKE and mediates dengue virus infection. J Biol Chem. 2022;298(6):101956. doi: 10.1016/j.jbc.2022.101956
  • Miao M, Yu F, Wang D, et al. Proteomics profiling of Host cell response via protein expression and phosphorylation upon dengue virus infection. Virol Sin. 2019;34(5):549–562. doi: 10.1007/s12250-019-00131-2
  • Wongtrakul J, Thongtan T, Pannengpetch S, et al. Phosphoproteomic analysis of dengue virus infected U937 cells and identification of pyruvate kinase M2 as a differentially phosphorylated phosphoprotein. Sci Rep. 2020;10(1):14493. doi: 10.1038/s41598-020-71407-x
  • Allgoewer K, Wu S, Choi H, et al. Re-mining serum proteomics data reveals extensive post-translational modifications upon Zika and dengue infection. Mol Omics. 2023;19(4):308–320. doi: 10.1039/D2MO00258B
  • Kandel Y, Pinch M, Lamsal M, et al. Exploratory phosphoproteomics profiling of Aedes aegypti malpighian tubules during blood meal processing reveals dramatic transition in function. PLOS ONE. 2022;17(7):e0271248. doi: 10.1371/journal.pone.0271248
  • Liao KC, Chuo V, Ng WC, et al. Identification and characterization of host proteins bound to dengue virus 3’ UTR reveal an antiviral role for quaking proteins. RNA. 2018;24(6):803–814. doi: 10.1261/rna.064006.117
  • Phillips SL, Soderblom EJ, Bradrick SS, et al. Identification of proteins bound to dengue viral RNA in vivo reveals new host proteins important for virus replication. MBio. 2016;7(1):e01865–01815. doi: 10.1128/mBio.01865-15
  • Viktorovskaya OV, Greco TM, Cristea IM, et al. Identification of RNA binding proteins associated with dengue virus RNA in infected cells reveals temporally distinct Host factor requirements. PLOS Negl Trop Dis. 2016;10(8):e0004921. doi: 10.1371/journal.pntd.0004921
  • Pando-Robles V, Oses-Prieto JA, Rodriguez-Gandarilla M, et al. Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free LC-MS. J Proteomics. 2014;111:16–29. doi: 10.1016/j.jprot.2014.06.029
  • Suttitheptumrong A, Rawarak N, Reamtong O, et al. Plectin is required for trans-endothelial permeability: a model of plectin dysfunction in human endothelial cells after TNF-alpha Treatment and dengue virus infection. Proteomics. 2018;18(23):e1800215. doi: 10.1002/pmic.201800215
  • Ojha A, Bhasym A, Mukherjee S, et al. Platelet factor 4 promotes rapid replication and propagation of dengue and Japanese encephalitis viruses. EBioMedicine. 2019;39:332–347. doi: 10.1016/j.ebiom.2018.11.049
  • Aviner R, Li KH, Frydman J, et al. Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis. Nature. 2021;596(7873):558–564. doi: 10.1038/s41586-021-03851-2
  • Falconi-Agapito F, Kerkhof K, Merino X, et al. Dynamics of the magnitude, breadth and depth of the antibody response at epitope level following dengue infection. Front Immunol. 2021;12:686691. doi: 10.3389/fimmu.2021.686691
  • Allgoewer K, Maity S, Zhao A, et al. New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Mol Cell Proteomics. 2021;20:100052. doi: 10.1016/j.mcpro.2021.100052
  • Wee S, Alli-Shaik A, Kek R, et al. Multiplex targeted mass spectrometry assay for one-shot flavivirus diagnosis. Proc Natl Acad Sci USA. 2019;116(14):6754–6759. doi: 10.1073/pnas.1817867116
  • Han L, Ao X, Lin S, et al. Quantitative comparative proteomics reveal biomarkers for dengue disease severity. Front Microbiol. 2019;10:2836. doi: 10.3389/fmicb.2019.02836
  • Jadhav M, Nayak M, Kumar S, et al. Clinical proteomics and cytokine profiling for dengue fever disease severity biomarkers. Omics: A J Intgr Biol. 2017;21(11):665–677. doi: 10.1089/omi.2017.0135
  • Nhi DM, Huy NT, Ohyama K, et al. A proteomic approach identifies candidate early biomarkers to predict severe dengue in children. PloS Negl Trop Dis. 2016;10(2):e0004435. doi: 10.1371/journal.pntd.0004435
  • Palanichamy Kala M, St John AL, Rathore APS. Dengue: update on clinically relevant therapeutic strategies and vaccines. Curr Treat Options Infect Dis. 2023;15(2):27–52. doi: 10.1007/s40506-023-00263-w
  • Owen L, Laird K, Shivkumar M. Antiviral plant-derived natural products to combat RNA viruses: targets throughout the viral life cycle. Lett Appl Microbiol. 2022;75(3):476–499. doi: 10.1111/lam.13637
  • Altamish M, Khan M, Baig MS, et al. Therapeutic potential of medicinal plants against dengue infection: a mechanistic viewpoint. ACS Omega. 2022;7(28):24048–24065. doi: 10.1021/acsomega.2c00625
  • Paemanee A, Hitakarun A, Wintachai P, et al. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed Pharmacother. 2019;109:322–332. doi: 10.1016/j.biopha.2018.10.054
  • Tan WL, Lee YK, Ho YF, et al. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection. Peer J. 2018;5:e3939. doi: 10.7717/peerj.3939
  • Ullah A, Atia Tul W, Gong P, et al. Identification of new inhibitors of NS5 from dengue virus using saturation transfer difference (STD-NMR) and molecular docking studies. RSC Adv. 2022;13(1):355–369. doi: 10.1039/D2RA04836A
  • Denolly S, Guo H, Martens M, et al. Dengue virus NS1 secretion is regulated via importin-subunit beta1 controlling expression of the chaperone GRp78 and targeted by the clinical drug ivermectin. MBio. 2023;14(5):e0144123. doi: 10.1128/mbio.01441-23
  • Wilder-Smith A. Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63(1):40–44. doi: 10.1007/s00103-019-03060-3
  • Wilder-Smith A. Dengue vaccine development by the year 2020: challenges and prospects. Curr Opin Virol. 2020;43:71–78. doi: 10.1016/j.coviro.2020.09.004
  • Thomas SJ, Yoon IK. A review of Dengvaxia(R): development to deployment. Hum Vaccin Immunother. 2019;15(10):2295–2314. doi: 10.1080/21645515.2019.1658503
  • Krishnan GS, Joshi A, Akhtar N, et al. Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microb Pathog. 2021;150:104728. doi: 10.1016/j.micpath.2020.104728
  • Yewdell JW. MHC class I immunopeptidome: past, present, and future. Mol Cell Proteomics. 2022;21(7):100230. doi: 10.1016/j.mcpro.2022.100230
  • Mayer RL, Impens F. Immunopeptidomics for next-generation bacterial vaccine development. Trends Microbiol. 2021;29(11):1034–1045. doi: 10.1016/j.tim.2021.04.010
  • Sharma P, Sharma P, Sheeba, et al. Top down computational approach: a vaccine development step to find novel superantigenic HLA binding epitopes from dengue virus proteome. Int J Pept ResearchTher. 2021;27(2):1469–1480. doi: 10.1007/s10989-021-10184-1
  • Friedman-Klabanoff DJ, Birkhold M, Short MT, et al. Safety and immunogenicity of AGS-v PLUS, a mosquito saliva peptide vaccine against arboviral diseases: a randomized, double-blind, placebo-controlled Phase 1 trial. EBioMedicine. 2022;86:104375. doi: 10.1016/j.ebiom.2022.104375
  • Chao CH, Wu WC, Lai YC, et al. Dengue virus nonstructural protein 1 activates platelets via toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLOS Pathog. 2019;15(4):e1007625. doi: 10.1371/journal.ppat.1007625
  • Ojha A, Nandi D, Batra H, et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep. 2017;7(1):41697. doi: 10.1038/srep41697
  • Chuang YC, Lin YS, Liu HS, et al. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J Virol. 2014;88(23):13759–13768. doi: 10.1128/JVI.02166-14
  • Maringer K, Yousuf A, Heesom KJ, et al. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics. 2017;18(1):101. doi: 10.1186/s12864-016-3432-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.