13,857
Views
4
CrossRef citations to date
0
Altmetric
Articles

Exploring the relationship between metacognitive and collaborative talk during group mathematical problem-solving – what do we mean by collaborative metacognition?

ORCID Icon &
Pages 14-36 | Received 28 Nov 2016, Accepted 17 Nov 2017, Published online: 29 Jan 2018

References

  • Adey, P., & Shayer, M. (1993). An exploration of long-term far-transfer effects following an extended intervention program in the high school science curriculum. Cognition and Instruction, 11(1), 1–29. http://doi.org/10.1207/s1532690xci1101_1
  • Adhami, M., Johnson, D., & Shayer, M. (1998). Does CAME work? Summary report on phase 2 of the cognitive acceleration in mathematics education, CAME, project. In Proceedings of the British society for research into learning mathematics day conference, Bristol, 15 Nov. 1997 (pp. 26–31). London: BSRLM. Retrieved from http://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-17-3-5.pdf
  • Anderson, T, Rourke, L, Garrison, R, & Archer, W. (2001). Assessing teaching presence in a computer conferencing context. Journal of Asynchronous Learning Networks, 5(2), 1–17.
  • Artz, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9, 137–175. http://doi.org/10.1207/s1532690xci0902_3
  • Berkowitz, M. W., & Gibbs, J. C. (1983). Measuring the developmental features of moral discussion. Merrill-Palmer Quarterly-Journal of Developmental Psychology, 29(4), 399–410.
  • Boonen, A. J. H., de Koning, B. B., Jolles, J., & van Der Schoot, M. (2016). Word problem solving in contemporary math education: A plea for reading comprehension skills training. Frontiers in Psychology, 7, 191. doi: 10.3389/fpsyg.2016.00191
  • Boonen, A. J. H., van Der Schoot, M., van Wesel, F., de Vries, M. H., & Jolles, J. (2013). What underlies successful word problem solving? A path analysis in sixth grade students. Contemporary Educational Psychology, 38(3), 271–279. doi: 10.1016/j.cedpsych.2013.05.001
  • Cardelle-Elawar, M. (1992). Effects of teaching metacognitive skills to students with low mathematics ability. Teaching and Teacher Education, 8(2), 109–121. https://doi.org/10.1016/0742-051X(92)90002-K
  • Carr, M., & Biddlecomb, B. (1998). Metacognition in mathematics from a constructivist perspective. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 66–92). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Case, J., & Gunstone, R. (2006). Metacognitive development: A view beyond cognition. Research in Science Education, 36(1–2), 51–67. doi: 10.1007/s11165-004-3953-9
  • Chalmers, C. (2009, July 3–7). Group metacognition during mathematical problem solving. Proceedings of MERGA 32 conference crossing divides. Wellington, New Zealand. Retrieved from https://www.merga.net.au/documents/Chalmers_RP09.pdf
  • Cohen, E. G., Lotan, R. A., Abram, P. L., Scarloss, B. A., & Schultz, S. E. (2002). Can groups learn? Teachers College Record, 104, 1045–1068. Retrieved from http://s3.amazonaws.com/academia.edu.documents/42787731/Can_Groups_Learn20160217-18513-k90ztx.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1495386186&Signature=6R1nnvaewqQB2YdplyUMw%2FhZv24%3D&response-content-disposition=inline%3B%20filename%3DCan_Groups_Learn.pdf doi: 10.1111/1467-9620.00196
  • Cohen, E. G., Lotan, R. A., Scarloss, B. A., & Arellano, A. R. (1999). Complex instruction: Equity in cooperative learning classrooms. Theory into Practice, 38, 80–86. http://dx.doi.org./10.1080/00405849909543836
  • Cornoldi, C., Carretti, B., Drusi, S., & Tencati, C. (2015). Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory. British Journal of Educational Psychology, 85, 424–439. doi:10.1111/bjep.I2083 doi: 10.1111/bjep.12083
  • Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34(5), 435–447. doi: 10.1177/002221940103400505
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry.. American Psychologist, 34(10), 906–911. http://doi.org/10.1037/0003-066X.34.10.906
  • Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163–176. doi: 10.2307/748391
  • Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on transfer, durability and metacognition. Educational Research, 42(2), 119–139. http://doi.org/10.1080/001318800363773
  • Gillies, R. M., & Khan, A. (2009). Promoting reasoned argumentation, problem-solving and learning during small-group work. Cambridge Journal of Education, 39(1), 7–27. doi: 10.1080/03057640802701945
  • Ginsburg, H. P., Labrecque, R., Carpenter, K., & Pagar, D. (2015). New possibilities for early mathematics education: Cognitive guidelines for designing high-quality software to promote young children’s meaningful mathematics learning. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 1055–1098). London: Oxford University Press.
  • Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49, 193–223. doi: 10.1023/A:1016209010120
  • Hurme, T.-R., Palonen, T., & Jarvela, S. (2006). Metacognition in joint discussions: An analysis of the patterns of interaction and the metacognitive content of the networked discussions in mathematics. Metacognition and Learning, 1, 181–200. https://doi.org.ezproxy.is.ed.ac.uk/10.1007/s11409-006-9792-5
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. London: Routledge.
  • Jacobse, A. E., & Harskamp, E. G. (2009). Student-controlled metacognitive training for solving word problems in primary school mathematics. Educational Research and Evaluation, 15(5), 447–463. https://doi.org.ezproxy.is.ed.ac.uk/10.1080/13803610903444519
  • Jitendra, A. K., & Star, J. R. (2012). An exploratory study contrasting high- and low-achieving students’ percent word problem solving. Learning and Individual Differences, 22, 151–158. doi:10.1016/j.lindif.2011.11.003
  • Kain, D. (2004). Owning significance: The critical incident technique in research. In K. deMarrias & L. D. Lapan (Eds.), Foundations for research: Methods of inquiry in education and the social sciences (pp. 69–85). Mahwah, MJ: Lawrence Erlbaum.
  • Kramarksi, B., & Friedman, S. (2014). Solicited versus unsolicited metacognitive prompts for fostering mathematical problem solving using multimedia. Journal of Educational Computing Research, 50(3), 285–314. doi: 10.2190/EC.50.3.a
  • Kramarski, B. (2004). Making sense of graphs: Does metacognitive instruction make a difference on students’ mathematical conceptions and alternative conceptions? Learning and Instruction, 14, 593–619. https://doi-org/10.1016/j.learninstruc.2004.09.003
  • Kramarski, B. (2008). Promoting teachers’ algebraic reasoning and self-regulation with metacognitive guidance. Metacognition and Learning, 3, 83–99. doi: 10.1007/s11409-008-9020-6
  • Kruger, A. C. (1993). Peer collaboration: Conflict, cooperation, or both? Social Development, 2, 165–182. doi: 10.1111/j.1467-9507.1993.tb00012.x
  • Kruger, A. C., & Tomasello, M. (1986). Transactive discussions with peers and adults. Developmental Psychology, 22(5), 681–685. doi: 10.1037/0012-1649.22.5.681
  • Larkin, S. (2009). Socially mediated metacognition and learning to write. Thinking Skills and Creativity, 4(3), 149–159. https://doi-org/10.1016/j.tsc.2009.09.003
  • Lester, F. K. (2013). Thoughts about research on mathematical problem-solving instruction. The Mathematics Enthusiast, 10(1–2), 245–278.
  • McElvany, N., & Artelt, C. (2009). Systematic reading training in the family: Development, implementation, and initial evaluation of the Berlin parent-child reading program. Learning and Instruction, 19(1), 79–95. https://doi-org/10.1016/j.learninstruc.2008.02.002
  • Mevarech, Z. R., & Fridkin, S. (2006). The effects of IMPROVE on mathematical knowledge, mathematical reasoning and meta-cognition. Metacognition and Learning, 1, 85–97. doi: 10.1007/s11409-006-6584-x
  • Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34(2), 365–394. doi: 10.3102/00028312034002365
  • Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73, 449–471. doi: 10.1348/000709903322591181
  • Michalsky, T., Mevarech, Z. R., & Haibi, L. (2009). Elementary school children reading scientific texts: Effects of metacognitive instruction. The Journal of Educational Research, 102(5), 363–376. http://doi.org/10.3200/JOER.102.5.363-376
  • Morosanova, V. I., Fomina, T. G., Kovas, Y., & Bogdanova, O. Y. (2016). Cognitive and regulatory characteristics and mathematical performances in high school students. Personality and Individual Differences, 90, 177–186. doi: 10.1016/j.paid.2015.10.034
  • Nucci, L. (2006). Education for moral development. In M. Killen, & J. Smetana (Eds.), Handbook of moral development (pp. 657–682). Mahwah, NJ: Lawrence Erlbaum Associates.
  • OECD. (2015). PISA 2015 collaborative problem solving framework. Retrieved from https://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Collaborative%20Problem%20Solving%20Framework%20.pdf
  • Özsoy, G. (2011). An investigation of the relationship between metacognition and mathematics achievement. Asia Pacific Educational Review, 12, 227–235. doi: 10.1007/s12564-010-9129-6
  • Pennequin, V., Sorel, O., Nanty, I., & Fontaine, R. (2010). Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking and Reasoning, 16(3), 198–220. doi: 10.1080/13546783.2010.509052
  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42, 149–161. doi: 10.1007/s11858-010-0240-2
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1–2), 111–139. http://doi.org/10.1007/s11165-005-3917-8
  • Sfard, A. (2012). Introduction: Developing mathematical discourse—some insights from communicational research. International Journal of Educational Research, 51-52, 1–9. https://doi-org/10.1016/j.ijer.2011.12.013
  • Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76. http://doi.org/10.1207/S15327884MCA0801_04
  • Shayer, M., Johnson, D. C., & Adhami, M. (1999, June 5). Does “came” work? (2) report on the key stage 3 results following the use of the cognitive acceleration in mathematics education, CAME, project in year 7 and 8. In E. Bills (Ed.), Proceedings of the day conference of the British society for research into learning mathematics. Lancaster, England: St Martin’s College. Retrieved from http://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-17-3-5.pdf
  • Stillman, G., & Mevarech, Z. (2010). Metacognition research in mathematics education: From hot topic to mature field. ZDM Mathematics Education, 42(2), 145–148. doi: 10.1007/s11858-010-0245-x
  • Teasley, S. (1997). Talking about reasoning: How important is the peer in peer collaboration? In B. Resnick (Ed.), Discourse, tools and reasoning. Essays on situated cognition (Vol. 160, pp. 361–384). Berlin Heidelberg: Springer. NATO ASI Series F: Computer and Systems Sciences. doi:10.1007/978-3-662-03362-3_16
  • Teasley, S. D., & Rochelle, J. (1993). Constructing a joint problem space: The computer as a tool for sharing knowledge. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 229–258). Hillsdale, NJ: Erlbaum.
  • Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem solving. Journal of Computer Assisted Learning, 19, 46–55. doi: 10.1046/j.0266-4909.2003.00005.x
  • Timmermans, R. E., Van Lieshout, E. D. C. M., & Verhoeven, L. (2007). Gender-related effects of contemporary math instruction for low performers on problem-solving behavior. Learning and Instruction, 17, 42–54. doi: 10.1016/j.learninstruc.2006.11.005
  • Van der Schoot, M., Bakker Arkema, A. H., Horsley, T. M., & Van Lieshout, E. D. C. M. (2009). The consistency effect depends on markedness in less successful but not successful problem solvers: An eye movement study in primary school children. Contemporary Educational Psychology, 34, 58–66. doi: 10.1016/j.cedpsych.2008.07.002
  • Van der Stel, M., Veenman, M. V. J., Deelen, K., & Haenen, J. (2010). The increasing role of metacognitive skills in math: A cross-sectional study from a developmental perspective. ZDM Mathematics Education, 42(2), 219–229. doi: 10.1007/s11858-009-0224-2
  • Veenman, M. V. J., Kok, R., & Blote, A. W. (2005). The relation between intellectual and metacognitive skills in early adolescence. Instructional Science, 33(3), 193–211. doi:10.1007/s11251 doi: 10.1007/s11251-004-2274-8
  • Veenman, M. V. J., Van Hout-Walters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14. doi: 10.1007/s11409-006-6893-0
  • Veldhuis-Diermanse, A. E. (2002). CSCLearning? Participation, learning activities and knowledge construction in computer supported collaborative learning in higher education (unpublished Ph.D.). University of Wageningen, Wageningen, Netherlands.
  • Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinck, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1, 195–229. doi: 10.1207/s15327833mtl0103_2
  • Vo, V. A., Li, R., Kornell, N., Pouget, A., & Cantlon, J. F. (2014). Young children bet on their numerical skills: Metacognition in the numerical domain. Psychological Science, 25, 1712–1721. doi: 10.1177/0956797614538458
  • Wahlstedt, L., & Lindkvist, L. (2007). Making sense of verbal problem-solving processes – a study of a cross-functional software development project. Proceedings of the international conference on organizational learning, knowledge, and capability, Ontario, Canada (pp. 1075–1091). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.4052&rep=rep1&type=pdf
  • Zohar, A., & David, A. B. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition and Learning, 3, 59–82. doi: 10.1007/s11409-007-9019-4