707
Views
8
CrossRef citations to date
0
Altmetric
Articles

The unit of analysis in the formulation of research problems: the case of mathematical modelling at university level

ORCID Icon, &
Pages 314-330 | Received 28 Feb 2018, Accepted 17 May 2019, Published online: 12 Jul 2019

References

  • Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A framework for research and curriculum development in mathematics education. New York: Springer-Verlag.
  • Artigue, M. (2009). Didactical design in mathematics education. In C. Winsløw (ed.), Nordic research in mathematics education. Proceedings of Norma 08 (pp. 7–16). Rotterdam, The Netherlands: Sense Publishers.
  • Barquero, B., Bosch, M., & Gascón, J. (2008). Using research and study courses for teaching mathematical modelling at university level. In D. Pitta-Pantazi & G. Pilippou (Eds.), Proceedings of the fifth congress of the European society for research in mathematics education (pp. 2015–2059). Larnaca: University of Cyprus.
  • Barquero, B., Bosch, M., & Gascón, J. (2013). The ecological dimension in teaching of mathematical modelling at university. Recherches en Didactique des Mathématiques (RDM), 33, 307–338.
  • Bikner-Ahsbahs, A., & Prediger, S. (2014). Networking of theories as a research practice in mathematics education. Cham, Germany: Springer.
  • Blomhøj, M., & Ärlebäck, J. (2018). Theory–practice relations in research on applications and modelling. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing Research in mathematics education: Twenty years of communication, cooperation and collaboration in Europe (pp. 90–104). London: Routledge.
  • Blomhøj, M., & Højgaard Jensen, T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.
  • Blomhøj, M., & Kjeldsen, T. H. (2009). Project organised science studies at university level: Exemplarity and interdisciplinarity. ZDM: The International Journal on Mathematics Education, 41(1), 183–198.
  • Blum, W. (2002). ICMI study 14: Applications and modelling in mathematics education – Discussion document. Educational Studies in Mathematics, 51(1-2), 149–171.
  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–96). Dordrecht: Springer.
  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and aplications in mathematics education. The 14th ICMI study. New York, NY: Springer.
  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling. Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM: Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.
  • Borromeo Ferri, R. (2007). Modeling from a cognitive perspective: Individual modeling routes of pupils. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling: Education, engineering and economics (pp. 260–270). Chichester: Horwood.
  • Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners’ modeling behavior. Journal für Mathematik-Didaktik, 31(1), 99–118.
  • Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI Bulletin, 58, 51–65.
  • Brousseau, G. (1997). Theory of didactical situations in mathematics 1970–1990. Translation from French: M. Cooper, N. Balacheff, R. Sutherland & V. Warfield. Dodrecht, The Netherlands: Kluwer Academic Publishers (1998, French version: Théorie des situations didactiques. Grenoble, France: La Pensée Sauvage).
  • Burkhardt, H. (2006). Modelling in mathematics classrooms: Reflections on past developments and the future. Zentralblatt für Didaktik der Mathematik, 38(2), 178–195.
  • Cai, J., Cirillo, M., Pelesko, J. A., Borromeo Ferri, R., Geiger, V., Stillman, G., & Kwon, O. (2014). Mathematical modeling in school education: Mathematical, cognitive, curricular, instructional, and teacher education perspectives. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the 38th meeting of the international group for the psychology of mathematics education (pp. 145–172). Vancouver: IGPME.
  • Carlson, M., Larsen, S., & Lesh, R. (2003). Integrating a models and modeling perspective with existing research and practice. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 465–478). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Chevallard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseigné. Grenoble, France: La Pensée sauvage.
  • Chevallard, Y. (1989). Le passage de l’arithmétique a l’algébrique dans l’enseignement des mathématiques au collège – Deuxième partie. Perspectives curriculaires: la notion de modélisation [The transition between arithmetic and algebra in the teaching of mathematics at secondary school level – Second part. Curricula approaches: The notion of modelling]. Petitx, 19, 45–75.
  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique [The analysis of teaching practices from the anthropological theory of the didactic]. Recherches en Didactique des Mathématiques, 19(2), 221–266.
  • Chevallard, Y. (2002). Organiser l’étude 3. Ecologie & régulation [Organizing the study 3. Ecology & regulation]. In J.-L. Dorier, M. Artaud, R. Berthelot, & R. Floris (Eds.), Actes de la XIe École d’Été de Didactique des Mathématiques (pp. 41–56). Grenoble, France: La Pensée Sauvage.
  • Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm. In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 173–187). Dordrecht, The Netherlands: Springer.
  • Chevallard, Y., & Bosch, M. (2014). Didactic transposition in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 170–174). Dordrecht: Springer.
  • Doerr, H. D. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 69–78). New York, NY: Springer.
  • Doerr, H. M., & English, L. (2006). Middle grade teachers’ learning through student’s engagement with modeling tasks. Journal of Mathematics Teacher Education, 9, 5–32.
  • Engestrom, Y., & Cole, M. (1997). Situated cognition in search of an agenda. In D. Kirschner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic and psychological perspectives (pp. 301–309). Mahwah, NJ: Lawrence Erlbaum.
  • Ernest, P. (2016). The unit of analysis in mathematics education: Bridging the political-technical divide? Educational Studies in Mathematics, 92(1), 37–58.
  • Galbraith, P. (2007). Beyond the low hanging fruit. In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 79–88). New York, NY: Springer.
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.
  • Galleguillos, J., & Borba, M. C. (2018). Expansive movements in the development of mathematical modeling: Analysis from an activity theory perspective. ZDM Mathematics Education, 50(1-2), 129–142.
  • García, F. J., Gascón, J., Ruiz-Higueras, L., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM Mathematics Education, 38(3), 226–246.
  • Hamilton, E., Lesh, R., Lester, F., & Brilleslyper, M. (2008). Model-eliciting activities (MEAs) as a bridge between engineering education research and mathematics education research. Advances in Engineering Education, 1(2), 1–25.
  • Holton, D. (2001). The teaching and learning of mathematics at university level – An ICMI study (new ICMI study series, Volume 7). Dordrecht, The Netherlands: Springer.
  • Kaiser, G., & Maaß, K. (2007). Modeling in lower secondary mathematics classroom – Problems and opportunities. In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 99–107). New York, NY: Springer.
  • Kidron, I. (2016). Epistemology and networking theories. Educational Studies in Mathematics, 91(2), 149–163.
  • Lesh, R. A., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003). Model development sequences. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, teaching and learning (pp. 35–58). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., & Doerr, H. (2003). Foundations of a model and modeling perspective on mathematics teaching, learning, and problem solving. In Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Martínez-Planell, R., & Trigueros, M. (2012). Students’ understanding of the general notion of a function of two variables. Educational Studies in Mathematics, 81(3), 365–384.
  • Niss, M. (2001). University mathematics based on problem-oriented students projects: 25 years of experience with the Roskilde model. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 153–165). Dordrecht, The Netherlands: Springer.
  • Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. (2010). Use of models in the teaching of linear algebra. Linear Algebra and its Applications, 432, 2125–2140.
  • Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM Mathematics Education, 40(2), 317–327.
  • Siig Andersen, A., & Heilesen, S. B. (2015). The Roskilde model: Problem-oriented learning and project work (Innovation and change in professional education). Switzerland: Springer International Publishing.
  • Trigueros, M., & Bianchini, B. L. (2016). Learning linear transformations using models. In E. Nardi, C. Winsløw, & T. Hausberger (Eds.), Proceedings of the first conference of the international network for didactic research in university mathematics (pp. 326–336). Montpellier, France: University of Montpellier and INDRUM.
  • Vázquez, R., Trigueros, M., & Romo-Vázquez, A. (2016). A model from signal analysis to design linear algebra activities. In E. Nardi, C. Winsløw, & T. Hausberger (Eds.), Proceedings of the first conference of the international network for didactic research in university mathematics (pp. 241–250). Montpellier, France: University of Montpellier and INDRUM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.