1,397
Views
5
CrossRef citations to date
0
Altmetric
Articles

Developing a framework for characterising problem-posing activities: a review

ORCID Icon & ORCID Icon
Pages 28-50 | Received 18 Apr 2019, Accepted 13 Feb 2021, Published online: 18 Jun 2021

References

  • Arıkan, E. E. (2019). Comparison of mathematical problem posing skills of university students in the context of critical thinking dispositions. Istanbul Sabahattin Zaim University Journal of Faculty of Education, 1(1), 51–66.
  • Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137–175. doi:https://doi.org/10.1207/s1532690xci0902_3
  • Baumanns, L., & Rott, B. (2019). Is problem posing about posing “problems”? A terminological framework for researching problem posing and problem solving. In I. Gebel, A. Kuzle & B. Rott (Eds.), Proceedings of the 2018 joint conference of ProMath and the GDM working group on problem solving (pp. 21–32). Münster: WTM.
  • Baumanns, L., & Rott, B. (2021). Rethinking problem-posing situations: A review. Investigations in Mathematics Learning. doi:https://doi.org/10.1080/19477503.2020.1841501
  • Baumanns, L. & Rott, B. (2020). Zum Prozess des Aufwerfens mathematischer Probleme - Validierung eines deskriptiven Prozessmodells. In L. Baumanns, J. Dick, A.-C. Söhling, N. Sturm, & B. Rott (Eds-), Wat jitt dat, wenn et fädich es? Tagungsband der Herbsttagung des GDM-Arbeitskreises Problemlösen in Köln 2019 (pp. 87-100). Münster: WTM.
  • Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457–485. doi:https://doi.org/10.1007/s10649-020-09995-8
  • Brown, S. I., & Walter, M. I. (2005). The art of problem posing (3rd ed.). Mahwah: Lawrence Erlbaum Associates.
  • Bruder, R. (2000). Akzentuierte Aufgaben und heuristische Erfahrungen – Wege zu einem anspruchsvollen Mathematikunterricht für alle. In L. Flade & W. Herget (Eds.), Mathematik. Lehren und Lernen nach TIMSS. Anregungen für die Sekundarstufen (pp. 69–78). Berlin: Volk und Wissen.
  • Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing. From research to effective practice (pp. 3–34). New York: Springer.
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics, 105(3), 287–301. doi:https://doi.org/10.1007/s10649-020-10008-x
  • Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83(1), 57–69. doi:https://doi.org/10.1007/s10649-012-9429-3
  • Cankoy, O. (2014). Interlocked problem posing and children’s problem posing performance in free structures situations. International Journal of Science and Mathematics Education, 12(1), 219–238. doi:https://doi.org/10.1007/s10763-013-9433-9
  • Cantor, G. (1966). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind (Reprografischer Nachdruck der Ausgabe Berlin 1932). Hildesheim: Georg Olms.
  • Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers' practices. Educational Studies in Mathematics, 52(3), 243–270. doi:https://doi.org/10.1023/A:1024364304664
  • Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM – Mathematics Education, 37(3), 149–158. doi:https://doi.org/10.1007/s11858-005-0004-6
  • Cross, D. R., & Paris, S. G. (1988). Developmental and instructional analyses of children’s metacognition and reading comprehension. Journal of Educational Psychology, 80(2), 131–142. doi:https://doi.org/10.1037/0022-0663.80.2.131
  • Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34(5), 435–447. doi:https://doi.org/10.1177/002221940103400505
  • English, L. D. (1997). The development of fifth-grade children’s problem-posing abilities. Educational Studies in Mathematics, 34(3), 183–217. doi:https://doi.org/10.1023/A:1002963618035
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911. doi:https://doi.org/10.1037/0003-066X.34.10.906
  • Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover Publications.
  • Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519–524.
  • Jay, S., & Perkins, N. (1997). Problem finding: The search for mechanism. In M. A. Runco (Ed.), The creativity research handbook (pp. 257–293). Cresskill, NJ: Hampton Press.
  • Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 123–147). Hillsdale: Lawrence Erlbaum Associates.
  • Kim, Y. R., Park, M. S., Moore, T. J., & Varma, S. (2013). Multiple levels of metacognition and their elicitation through complex problem-solving tasks. The Journal of Mathematical Behavior, 37, 337–396. doi:https://doi.org/10.1016/j.jmathb.2013.04.002
  • Kontorovich, I., & Koichu, B. (2016). A case study of an expert problem poser for mathematics mompetitions. International Journal of Science and Mathematics Education, 14(1), 81–99. doi:https://doi.org/10.1007/s10763-013-9467-z
  • Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). An exploratory framework for handling the complexity of mathematical problem posing in small groups. The Journal of Mathematical Behavior, 31(1), 149–161. doi:https://doi.org/10.1016/j.jmathb.2011.11.002
  • Kuhn, D., & Dean, D. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268–273. doi:https://doi.org/10.1207/s15430421tip4304_4
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. doi:https://doi.org/10.2307/2529310
  • Lang, S. (1989). Faszination Mathematik – Ein Wissenschaftler stellt sich der Öffentlichkeit. Braunschweig: Vieweg.
  • Leavy, A., & Hourigan, M. (2020). Posing mathematically worthwhile problems: Developing the problem-posing skills of prospective teachers. Journal of Mathematics Teacher Education, 23, 341–361. doi:https://doi.org/10.1007/s10857-018-09425-w
  • Lee, S.-Y. (2020). Research status of mathematical problem posing in mathematics education journals. International Journal of Science and Mathematics Education. doi:https://doi.org/10.1007/s10763-020-10128-z
  • Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes. Final Report. Bloomington: Indiana University Mathematics Education Development Center.
  • Martinez-Luaces, V., Fernandez-Plaza, J., Rico, L., & Ruiz-Hildalgo, J. F. (2020). Inverse reformulations of a modelling problem proposed by prospective teachers in Spain. International Journal of Mathematical Education in Science and Technology. doi:https://doi.org/10.1080/0020739X.2019.1683773
  • Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Education in Science and Technology, 31(1), 91–111. doi:https://doi.org/10.1080/002073900287426
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. PLoS Medicine, 6(7), e1000097. doi:https://doi.org/10.1371/journal.pmed.1000097
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston: Author.
  • Papadopoulos, I., Patsiala, N., Baumanns, L., & Rott, B. (accepted). Multiple approaches to problem posing: Theoretical considerations to its definition, conceptualization and implementation. CEPS Journal, 12(1).
  • Pelczer, I., & Gamboa, F. (2009). Problem posing: Comparison between experts and novices. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33th conference of the International Group for the Psychology of Mathematics Education. Vol. 4 (pp. 353–360). Thessaloniki: PME.
  • Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219–225.
  • Pólya, G. (1957). How to solve it. A new aspect of mathematical method (2nd ed.). Princeton, NY: Princeton University Press.
  • Pólya, G. (1966). On teaching problem solving. In The Conference Board of the Mathematical Sciences (Ed.), The role of axiomatics and problem solving in mathematics (pp. 123–129). Boston, MA: Ginn.
  • Rott, B. (2012). Problem solving processes of fifth graders – an analysis of problem solving types. In S. J. Cho (Ed.), Proceedings of the 12th ICME conference. Seoul, Korea.
  • Ruthven, K. (2020). Problematising learning to teach through mathematical problem posing. International Journal of Educational Research, 102, 1–7. doi:https://doi.org/10.1016/j.ijer.2019.07.004
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
  • Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale: Lawrence Erlbaum Associates.
  • Schoenfeld, A. H. (1989). Teaching mathematical thinking and problem solving. In L. B. Resnick & L. E. Klopfer (Eds.), Toward a thinking curriculum: Current cognitive research (pp. 83–103). Washington, DC: Association for Supervisors and Curriculum Developers.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense-making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: MacMillan.
  • Schoenfeld, A. H. (2000). Purposes and methods of research in mathematics education. Notices of the AMS, 47, 641–649.
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. doi:https://doi.org/10.1007/BF02212307
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.
  • Silver, E. A. (2013). Problem-posing-research in mathematics education: Looking back, looking around, and looking ahead. Educational Studies in Mathematics, 83(1), 157–162.
  • Singer, F. M., Ellerton, N. F., & Cai, J. (2013). Problem-posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83(1), 1–7. doi:https://doi.org/10.1007/s10649-013-9478-2
  • Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: Implications for assessment of mathematical creativity. ZDM – Mathematics Education, 49(1), 37–52. doi:https://doi.org/10.1007/s11858-016-0820-x
  • Sriraman, B., & Dickman, B. (2017). Mathematical pathologies as pathways into creativity. ZDM – Mathematics Education, 49(1), 137–145. doi:https://doi.org/10.1007/s11858-016-0822-8
  • Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing in school mathematics. In P. C. Clarkson (Ed.), Technology in mathematics education (pp. 518–525). Melbourne: Mathematics Education Research Group of Australasia.
  • Sullivan, P., & Clarke, D. (1991). Catering to all abilities through ‘good’ questions. Arithmetic Teacher, 39(2), 14–18. doi:https://doi.org/10.5951/AT.39.2.0014
  • Tichá, M., & Hošpesová, A. (2013). Developing teachers’ subject didactic competence through problem posing. Educational Studies in Mathematics, 83(1), 133–143. doi:https://doi.org/10.1007/s10649-012-9455-1
  • Törner, G., & Azarello, F. (2012). Grading mathematics education research journals. EMS Newsletter, 86, 52–54.
  • Van Harpen, X., & Presmeg, N. C. (2015). An investigation of high school students‘ mathematical problem posing in the United States and China. In F. M., Singer, N. F., Ellerton, & J., Cai (Eds.), Mathematical problem posing. From research to effective practice (pp. 293–308). New York: Springer.
  • Voica, C., & Singer, F. M. (2013). Problem modification as a tool for detecting cognitive flexibility in school children. ZDM – Mathematics Education, 45(2), 267–279. doi:https://doi.org/10.1007/s11858-013-0492-8
  • Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing? Educational Studies in Mathematics, 105(3), 487–517. doi:https://doi.org/10.1007/s10649-020-10005-0
  • Wessman-Enzinger, N. M., & Mooney, E. S. (2019). Conceptual models for integer addition and subtraction. International Journal of Mathematical Education in Science and Technology, 1–28. doi:https://doi.org/10.1080/0020739X.2019.1685136
  • Whitebread, D., Coltman, P., Pasternak, D. P., Sangster, C., Grau, V., Bingham, S., … Demetriou, D. (2009). The development of two observational tools for assessing metacognition and self-regulated learning in young children. Metacognition and Learning, 4(1), 63–85. doi:https://doi.org/10.1007/s11409-008-9033-1
  • Williams, S. R., & Leatham, K. R. (2017). Journal quality in mathematics education. Journal for Research in Mathematics Education, 48(4), 369–396.
  • Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96(1), 101–118. doi:https://doi.org/10.1007/s10649-017-9760-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.