79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Growing patterns invention by primary education students

ORCID Icon, ORCID Icon & ORCID Icon
Received 01 Apr 2023, Accepted 13 Apr 2024, Published online: 22 May 2024

References

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241. https://doi.org/10.1023/A:1024312321077
  • Ayala-Altamirano, C., & Molina, M. (2021). Fourth-graders’ justifications in early algebra tasks involving a functional relationship. Educational Studies in Mathematics, 107(2), 359–382. https://doi.org/10.1007/s10649-021-10036-1
  • Baumanns, L., & Rott, B. (2022). The process of problem posing: development of a descriptive phase model of problem posing. Educational Studies in Mathematics, 110, 251–269. https://doi.org/10.1007/s10649-021-10136-y
  • Blanton, M. L. (2017). Algebraic reasoning in Grades 3–5. In M. Battista (Ed.), Reasoning and sense making in grades 3–5 (pp. 67–102). NCTM.
  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization, advances in mathematics education: A global dialogue from multiple perspective (pp. 5–23). Springer. https://doi.org/10.1007/978-3-642-17735-4_2
  • Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing: Theoretical considerations, methodology, and directions for future research. International Journal of Educational Research, 102, 101391. https://doi.org/10.1016/j.ijer.2019.01.001
  • Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B., & Garber, T. (2013). Mathematical problem posing as a measure of curricular effect on students’ learning. Educational Studies in Mathematics, 83(1), 57–69. https://doi.org/10.1007/s10649-012-9429-3
  • Cañadas, M. C., Molina, M., & del Río, A. (2018). Meanings given to algebraic symbolism in problem-posing. Educational Studies in Mathematics, 98(1), 19–37. https://doi.org/10.1007/s10649-017-9797-9
  • Castro-Rodriguez, E., & Castro, E. (2016). Pensamiento lógico-matemático. In E. Castro & E. Castro (Eds.), Enseñanza y aprendizaje de las matemáticas en educación infantil (pp. 87–108). Pirámide.
  • Dörfler, W. (2008). En route from patterns to algebra: Comments and reflections. ZDM, 40(1), 143–160. https://doi.org/10.1007/s11858-007-0071-y
  • Fernández-Millán, E., & Molina, M. (2017). Secondary students’ implicit conceptual knowledge of algebraic symbolism. An exploratory study through problem posing. International Electronic Journal of Mathematics Education, 12(3), 799–826. https://doi.org/10.29333/iejme/649
  • Fujita, T., & Yamamoto, S. (2011). The development of children’s understanding of mathematical patterns through mathematical activities. Research in Mathematics Education, 13(3), 249–267. https://doi.org/10.1080/14794802.2011.624730
  • Hale, M. W. (2005). Using the standards. Algebra, Grade 4. Frank Schaffer Publications.
  • Hunter, J., & Miller, J. (2022). The use of cultural contexts for patterning tasks: Supporting young diverse students to identify structures and generalise. ZDM – Mathematics Education, 54(6), 1349–1362. https://doi.org/10.1007/s11858-022-01386-y
  • Lüken, M. M. (2012). Young children’s structure sense. Journal Für Mathematik-Didaktik, 33(2), 263–285. https://doi.org/10.1007/s13138-012-0036-8
  • McGarvey, L. M. (2012). What is a pattern? Criteria used by teachers and young children. Mathematical Thinking and Learning, 14(4), 310–337. https://doi.org/10.1080/10986065.2012.717380
  • Ministerio de Educación y Formación Profesional. (2022). Real Decreto 157/2022 de 01 de marzo, por el que se establece la ordenación y enseñanzas mínimas de la Educación Primaria [Royal Decree 157/2022 of March 01, which establishes the basic curriculum of primary education]. BOE, 52, 24386-24504.
  • Morales, R., Cañadas, M. C., & Castro, E. (2017). Creation and continuation of patterns by two 6-7 year-old students in sequences task. PNA. Revista de Investigación en Didáctica de la Matemática, 11(4), 233–252. https://doi.org/10.30827/pna.v11i4.6241
  • Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49. https://doi.org/10.1007/BF03217544
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. NGA & CCSSO.
  • Ontario Ministry of Education and Training. (2020). The Ontario curriculum grades 1–8: Mathematics. Ministry of Education.
  • Orton, J., Orton, A., & Roper, T. (1999). Pictorial and practical contexts and the perception of pattern. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 121–136). Continuum.
  • Outhred, L., & y Mitchelmore, M. (2000). Young children's intuitive understanding of rectangular area measurement. En Journal for Research in Mathematics Education, 31(2), 168–190.
  • Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268. https://doi.org/10.5951/jresematheduc.42.3.0237
  • Pasnak, R. (2017). Empirical studies of patterning. Psychology (Savannah, Ga ), 08(13), 2276–2293. https://doi.org/10.4236/psych.2017.813144
  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1–19. https://doi.org/10.1080/14794800903569741
  • Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic thinking. In B. Ubuz (Ed.), 35th conference of the international group for the psychology of mathematics education developing mathematical thinking (Vol. 4, pp. 17–24). PME.
  • Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigaciónen educación matemática. PNA, 4(1), 1–14.
  • Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low-income children’s mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727–1742. https://doi.org/10.1111/cdev.12662
  • Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical considerations. Springer.
  • Rivera, F., & Rossi-Becker, J. (2016). Middle school students’ patterning performance on semi-free generalization tasks. The Journal of Mathematical Behavior, 43(1), 53–69. https://doi.org/10.1016/j.jmathb.2016.05.002
  • Stoyanova, E. (2000). Empowering students’ problem solving via problem posing: The art of framing ‘good’ questions. Australian Mathematics Teacher, 56(1), 33–37.
  • Torres, M. D., Moreno, A., Vergel, R., & Cañadas, M. C. (2023). The evolution from “I think it plus three” towards “I think it is always plus three.” transition from arithmetic generalization to algebraic generalization. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-023-10414-6
  • Ubilla, C., & Cerda, V. (2020). Texto del Estudiante Matemática 2o básico. Santillana.
  • Warren, E., & Cooper, T. J. (2008). Patterns that support early algebraic thinking in elementary school. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics (pp. 113–126). NCTM.
  • Wijns, N., Torbeyns, J., De Smedt, B., & Verschaffel, L. (2019). Young children’s patterning competencies and mathematical development: A review. In K. M. Robinson, H. P. Osana, & D. Kotsopoulos (Eds.), Mathematical learning and cognition in early childhood (pp. 139–161). Springer International Publishing. https://doi.org/10.1007/978-3-030-12895-1_9
  • Wijns, N., Verschaffel, L., De Smedt, B., & Torbeyns, J. (2021). Associations between repeating patterning, growing patterning, and numerical ability: A longitudinal panel study in 4- to 6-year olds. Child Development, 92(4), 1354–1368. https://doi.org/10.1111/cdev.13490
  • Wilkie, K. J. (2022). Generalization of quadratic figural patterns: Shifts in student noticing. The Journal of Mathematical Behavior, 65, 100917. https://doi.org/10.1016/j.jmathb.2021.100917
  • Yeo, J. B. W. (2017). Development of a framework to characterise the openness of mathematical tasks. International Journal of Science and Mathematics Education, 15(1), 175–191. https://doi.org/10.1007/s10763-015-9675-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.