1,062
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of a novel mobile device app for value-maximized bucking by chainsaw

ORCID Icon, & ORCID Icon
Pages 63-73 | Received 06 Nov 2020, Accepted 05 May 2021, Published online: 06 Jun 2021

References

  • Acuna MA, Murphy GE. 2005. Optimal bucking of Douglas fir taking into consideration external properties and wood density. N Z J For Sci. 35:139–152.
  • Akay AE, Sessions J, Serin H, Pak M, Yenilmez N. 2010. Applying optimum bucking method in producing Taurus Fir (Abies cilicica) logs in Mediterranean region of Turkey. Balt For. 16:273–279.
  • Altherr E, Unfried P, Hradetzky J, Hradetzky V. 1974. Statistische Rindenbeziehungen als Hilfsmittel zur Ausformung und Aufmessung unentrindeten Stammholzes: Teil I: Kiefer, Buche, Hainbuche, Esche und Roterle [Statistical bark relations for bucking and measurement of stems in bark: Part I: Pine, European beech, hornbeam, ash and red alder]. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg im Breisgau (Germany): Mitteilungen d. FVA. 61:137.
  • Altherr E, Unfried P, Hradetzky J, Hradetzky V. 1975. Statistische Rindenbeziehungen als Hilfsmittel zur Ausformung und Aufmessung unentrindeten Stammholzes: Teil II: Europäische Lärche, Japanische Lärche, Schwarzkiefer, Stieleiche, Traubeneiche, Roteiche, Bergahorn und Linde [Statistical bark relations for bucking and measurement of stems in bark: Part II: European larch, Japanese Larch, Austrian pine, penduculate oak, sessile oak, northern red oak, sycamore maple and lime]. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg im Breisgau (Germany): Mitteilungen d. FVA.68:201.
  • Altherr E, Unfried P, Hradetzky J, Hradetzky V. 1978. Statistische Rindenbeziehungen als Hilfsmittel zur Ausformung und Aufmessung unentrindeten Stammholzes: Teil IV: Fichte, Tanne, Douglasie und Sitka-Fichte [Statistical bark relations for bucking and measurement of stems in bark: Part IV: Norway spruce, Fir, Douglas fir, Sitka spruce]. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg im Breisgau (Germany): Mitteilungen d. FVA. 90:294.
  • Berendt F, Fortin M, Jaeger D, Schweier J. 2017. How climate change will affect forest composition and forest operations in Baden-Württemberg-A GIS-based case study approach. FORESTS. 8:298.
  • Bont L 2005. Kundenorientierte Optimierung der Sortiments-Aushaltung bei der Holzernte [Customer-oriented bucking optimization in timber harvesting]. master’s thesis. Zürich (Switzerland): Swiss Federal Institute of Technology.
  • Bowers S. 1998. Increased value through optimal bucking. West J Appl For. 13:85–89.
  • Briggs DG 1989. Tree Value System: descriptions and assumptions. General technical Report PNW-GTR-239. Portland (OR (U.S.A)): USDA Forest Service, Pacific Northwest Research Station, p. 24.
  • Eckmüllner O, Schedl P, Sterba H. 2007. Neue Schaftkurven für die Hauptbaumarten Österreichs und deren Ausformung in marktkonforme Sortimente. Austrian J For Sci. 124:215–236.
  • Eng G, Whyte AGD 23-24th August 1982. Optimal tree bucking. Operational research society of New Zealand: Proceedings of 18th annual ORSNZ conference, Canterbury, New Zealand, 91–98.
  • Eng H, Daellenbach HG. 1985. Technical note - forest outturn optimization by Dantzig-Wolfe decomposition and dynamic programming column generation. OPER RES. 33:459–464.
  • Erber G 24-28 September 2018. First accuracy test of a novel mobile device based application for value-optimized bucking in motor-manual harvesting operations. Proceedings of the 51st International Symposium on Forestry Mechanization: “Improved Forest Mechanisation: Mobilizing natural resources and preventing wildfires”, Madrid, Spain, 112–123.
  • Erber G, Viertbauer M, Schildberger V 2019. T4E Bucking App - A mobile device based application for value-optimized motor-manual bucking - manual, version 1.3, Sep 2019. [accessed 2020 Sep 29]. http://www.tech4effect.eu/wp-content/uploads/2019/11/manual-english-v13-201909.pdf
  • Faaland B, Briggs D. 1984. Log bucking and lumber manufacturing using dynamic programming. Manage Sci. 30:245–257.
  • Garland J, Sessions J, Olsen ED. 1989. Manufacturing logs with computer-aided bucking at the stump. For Pro J. 39:63–66.
  • Geerts JM, Twaddle AA. 1984. A method to assess log value loss caused by crosscutting practice on the skidsite. N Z J For. 29:173–184.
  • Gollob C, Ritter T, Nothdurft A. 2020. Forest inventory with long range and high-speed personal laser scanning (PLS) and simultaneous localization and mapping (SLAM) technology. Remote Sens. 12: 1509.
  • Grondin F. 1998. Improvements of the dynamic programming algorithm for tree bucking. Wood Fiber Sci. 30:91–104.
  • Hyyppä E, Kukko A, Kaijaluoto R, White J, Wulder M, Pyörälä J, Liang X, Yu X, Wang Y, Kaartinen H, et al. 2020. Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS J Photogramm Remote Sens. 161:246–262.
  • Kivinen V-P 2007. Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters. doctoral thesis. Helsinki (Finland): University of Helsinki.
  • Labelle ER, Bergen M, Windisch J. 2017. The effect of quality bucking and automatic bucking on harvesting productivity and product recovery in a pine-dominated stand. Eur J FOR RES. 136:639–652.
  • Laroze AJ. 1999. A linear programming, Tabu Search method for solving forest-level bucking optimization problems. FOR SCI 45: 108-116.
  • Laroze AJ, Greber BJ. 1997. Using Tabu Search to generate stand-level, rule-based bucking patterns. For Sci. 43:157–169.
  • Liang X, Kankare V, Yu X, Hyyppä J, Holopainen M. 2014. Automated stem curve measurement using terrestrial laser scanning. IEEE Trans Geosci Remote Sens. 52:1739–1748.
  • Magagnotti N, Kanzian C, Schulmeyer F, Spinelli R. 2013. A new guide for work studies in forestry. Int J for Eng. 24:249–253.
  • Mendoza GA, Bare BB. 1986. A two-stage decision model for log bucking and allocation. For Pro J. 36:70–74.
  • Murphy G 1987 . An economic analysis of final log manufacturing locations in the steep terrain Radiata pine plantations of New Zealand. Doctoral thesis. Corvallis (OR (U.S.A.)): Oregon State University,
  • Murphy G. 2008. Determining stand value and log product yields using terrestrial lidar and optimal bucking: a case study. J For. 106:317–324.
  • Näsberg M 1985. Mathematical programming models for optimal log bucking. Doctoral thesis. Linköping (Sweden): Linköping University.
  • Olsen E, Stringham B, Pilkerton S. 1997. Optimal bucking: two trials with commercial OSU BUCK software. Foresty Research Lab, Oregon State University, Corvallis (OR, U.S.A). Res Contrib. 16:32.
  • Olsen ED, Pilkerton S, Garland J, Sessions J. 1991. Questions about optimal bucking. Forestry Research Lab, Oregon State University, Corvallis (OR, U.S.A). Res Bull. 71:18.
  • Pickens J, Throop SA, Frendewey J. 1997. Choosing prices to optimally buck hardwood logs with multiple log-length demand restrictions. For Sci. 43:403–413.
  • Pickens JB, Lyon GW, Lee A, Frayer WE. 1993. HW-BUCK: a computer game for improving hardwood log bucking skills. J For. 91:42–45.
  • Pnevmaticos SM, Mann SH. 1972. Dynamic programming in tree bucking. For Prod J. 22:26–30.
  • Puumalainen J. 1998. Optimal cross‐cutting and sensitivity analysis for various log dimension constraints by using dynamic programming approach. Scand J For Res. 13:74–82.
  • Pyörälä J, Kankare V, Liang X, Saarinen N, Rikala J, Kivinen V, Sipi M, Holopainen M, Hyyppä J, Vastaranta M. 2019. Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry. 92:177–187.
  • R Core Team. Sep 30 2018. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. [accessed 2020]. https://www.R-project.org/.
  • Rossmann J, Schluse M, Schlette C. 2010. The virtual forest: robotics and simulation technology as the basis for new approaches to the biological and the technical production in the forest. Syst Cybernet Inform. 43–48.
  • Sessions J, Garland J, Olsen ED. 1989. Testing computer-aided bucking at the stump. J For. 82:43–46.
  • Sessions J, Layton R, Guangda L. 1988. Improving tree bucking decisions: a network approach. The Compiler. 6:5–9.
  • Smith J, Harrell G. 1961. Linear programming in log production. For Prod J. 11:8–11.
  • TECH4EFFECT. 2020. Policy brief. [accessed 2020 Sep 29]. http://www.tech4effect.eu/wp-content/uploads/2020/09/policy-brief-web.pdf.
  • Waddell DA 1982. A practical system for determining optimal tree bucking at the stump. Master’s thesis. Vancouver (Canada): University of Canterbury.
  • Wagner T. 2019. Industrie 4.0 für den Cluster Wald und Holz – umsetzung zukunftweisender Innovationen im Kompetenzzentrum Wald und Holz 4.0 [Industry 4.0 for the Forest and Wood Cluster - Implementation of trend-setting innovations in the Forest and Wood Competence Center 4.0]. Lehr- und Versuchsforstamt Arnsberger Wald (Arnsberg (Germany)): Leistungsbericht. 71–75. 2018.
  • Wang J, LeDoux C, Mcneel J. 2004. Optimal tree-stem bucking of Northeastern species of China. For Prod J. 54:45–52.
  • Wang J, Liu J, LeDoux CB. 2009. A three-dimensional bucking system for optimal bucking of Central Appalachian hardwoods. Int J For Eng. 20:26–35.
  • Wiener Börse AG. 2006. Österreichische Holzhandelsusancen 2006 [Austrian Timber Trade Guidelines 2006]. Vienna (Austria): Wiener Börse AG; p. 271.