833
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The economic potential of semi-automated tele-extraction of roundwood in Sweden

ORCID Icon, , , ORCID Icon &
Pages 271-288 | Received 08 Oct 2021, Accepted 15 Jul 2022, Published online: 09 Aug 2022

References

  • Ackerman P, Belbo H, Eliasson L, de Jong A, Lazdins A, Lyons J. 2014a. The cost model for calculation of forest operations costs. Int J For Eng. 25(1):75–81. doi:10.1080/14942119.2014.903711.
  • Ackerman P, Gleasure E, Ackerman S, Shuttleworth B. 2014b. Standards for time studies for the South African forest industry. accessed June 20. http://www.forestproductivity.co.za/?page_id=678.
  • Andersson U. 2013. Automation and traction control of articulated vehicles. Diss.: Luleå University of Technology.
  • Asikainen A. 1995. Discrete-event simulation of mechanized wood-harvesting systems. Diss.: University of Joensuu.
  • Asikainen A. 2010. Simulation of stump crushing and truck transport of chips. Scand J For Res. 25(3):245–250. doi:10.1080/02827581.2010.488656.
  • Banks J, Carson J, Nelson B, and Nicol D. 2005. Discrete-event system simulation. London: Prentice Hall International Series in Industrial and Systems Engineering. Pearson Education India: Pearson Education India.
  • Berg S, Bergström D, Nordfjell T. 2014. Simulating conventional and integrated stump-and round-wood harvesting systems: a comparison of productivity and costs. Int J For Eng. 25(2):138–155. doi:10.1080/14942119.2014.941640.
  • Bergstrand K-G. 1985. Underlag för prestationsmal för skotning. (Redogörelse). Spånga: Forskningsstiftelsen Skogsarbeten.
  • Brunberg T. 2004. Underlag till produktionsnormer för skotare. (Redogörelse). Uppsala: Skogforsk.
  • Bylund A. 2020. Personal communication. Production manager SCA Skog AB.
  • Core Team R. 2018. R: a language and environment for statistical computing. [Computer program]. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org/.
  • Dadhich S, Bodin U, Andersson U. 2016. Key challenges in automation of earth-moving machines. Autom Constr. 68:212–222. doi:10.1016/j.autcon.2016.05.009.
  • Dadhich S, Sandin F, Bodin U, Andersson U, Martinsson T. 2019. Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders. Autom Constr. 97:1–12. doi:10.1016/j.autcon.2018.10.013.
  • Diaz R, Behr JG. 2010. Discrete-event simulation. In: Sokolowski JA, Banks CM, editors. Modeling and simulation fundamentals. Suffolk: Wiley; p. 57.
  • Eriksson A. 2016. Improving the efficiency of forest fuel supply chains. Diss.: Swedish University of Agricultural Sciences.
  • Eriksson M, Lindroos O. 2014. Productivity of harvesters and forwarders in CTL operations in northern Sweden based on large follow-up datasets. Int J For Eng. 25(3):179–200. doi:10.1080/14942119.2014.974309.
  • FAO. 2014. Statistics yearbook forest products. Rome (Italy): FAO Statistics yearbook. [accessed 2021 May 11]. http://www.fao.org/forestry/statistics/80570/en/.
  • FAO. 2019. Statistics yearbook forest products. Rome (Italy): FAO Statistics yearbook. [accessed 2021 May 11]. http://www.fao.org/forestry/statistics/80570/en/.
  • FAO. 2020. The global forest resources assessment 2020. The Global Forest Resources Assessment 2020. Rome (Italy).
  • Fernandez-Lacruz R, Eriksson A, Bergström D. 2020. Simulation-based cost analysis of industrial supply of chips from logging residues and small-diameter trees. Forests. 11(1):1. doi:10.3390/f11010001.
  • Flisberg P, Rönnqvist M, Willén E, Frisk M, Friberg G. 2021. Spatial optimization of ground-based primary extraction routes using the bestway decision support system. Can J For Res. 51(5):675–691. doi:10.1139/cjfr-2020-0238.
  • Gullberg T. 1997. A deductive time consumption model for loading shortwood. J For Eng. 8(1):35–44.
  • HIAB HiVision LOGLIFT - JONSERED. Product description. [accessed 2021 May 21]. https://www.hiab.com/en/digital-solutions/hivision/hivision-for-forestry-cranes.
  • Hosseini A, Lindroos O, Wadbro E. 2019. A holistic optimization framework for forest machine trail network design accounting for multiple objectives and machines. Can J For Res. 49(2):111–120. doi:10.1139/cjfr-2018-0258.
  • Häggström C, Lindroos O. 2016. Human, technology, organization and environment – a human factors perspective on performance in forest harvesting. Int J For Eng. 27(2):67–78.
  • Johansson M, Erlandsson E, Kronholm T, Lindroos O. 2022. The need for flexibility in forest harvesting services–a case study on contractors’ workflow variations. Int J For Eng. 1–13. doi:10.1080/14942119.2022.2071142.
  • Johnson LR, and Fisher EL. 1978. Costing forest residue recovery through simulation. Washington DC: Institute of Electrical and Electronics Engineers (IEEE).
  • Kons K, La Hera P, Bergström D. 2020. Modelling dynamics of a log-yard through discrete-event mathematics. Forests. 11(2):155. doi:10.3390/f11020155.
  • Larsson J, Broxvall M, Saffiotti A. 2010. An evaluation of local autonomy applied to teleoperated vehicles in underground mines. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation, May 3-7; p. 1745–1752.
  • Lindroos O. 2012. Evaluation of technical and organizational approaches for directly loading logs in mechanized cut-to-length harvesting. For Sci. 58(4):326–341. doi:10.5849/forsci.11-001.
  • Lindroos O, La Hera P, Häggstrom C. 2017. Drivers of advances in mechanized timber harvesting - a selective review of technological innovation. Croatian J For Eng. 38(2):243–258.
  • Lindroos O, Mendoza-Trejo O, La Hera P, and Morales DO. 2019. Advances in using robots in forestry operations. In: Billingsley J, editor. Robotics and automation for improving agriculture. Vol. 44, Cambridge, UK: Burleigh Dodds Series in Agricultural Science; p. 233–260.
  • Lundbäck M, Häggström C, Nordfjell T. 2021. Worldwide trends in methods for harvesting and extracting industrial roundwood. Int J For Eng. 32(3):202–215. doi:10.1080/14942119.2021.1906617.
  • Manner J. 2015. Automatic and experimental methods to studying forwarding work. Diss. Swedish University of Agricultural Sciences.
  • Manner J, Berg S, and Ersson BT. 2019. Forwarding during final felling: work element-specific distributions of driving distances at the stand level. Int J For Eng. 31(1):1–18.
  • Manner J, Nordfjell T, Lindroos O. 2013. Effects of the number of assortments and log concentration on time consumption for forwarding. Silva Fenn. 47(4):19. doi:10.14214/sf.1030.
  • Manner J, Palmroth L, Nordfjell T, Lindroos O. 2016. Load level forwarding work element analysis based on automatic follow-up data. Silva Fenn. 50(3):1–19. doi:10.14214/sf.1546.
  • Marklund S. 2017. The comparison of automatic and manual loading in an underground mining environment. Diss. Luleå University of Technology.
  • Milne B, Chen X, Hann C, Parker R, Milliken P. 2013. Design and development of teleoperation for forest machines: an overview. Engineering creative design in robotics and mechatronics. p. 186–207.
  • Nordfjell T, Öhman E, Lindroos O, Ager B. 2019. The technical development of forwarders in Sweden between 1962 and 2012 and of sales between 1975 and 2017. Int J For Eng. 30(1):1–13. doi:10.1080/14942119.2019.1591074.
  • Nurminen T, Korpunen H, Uusitalo J. 2006. Time consumption analysis of the mechanized cut-to-length harvesting system. Silva Fenn. 40(2):336–363. doi:10.14214/sf.346.
  • Olsson M-O, and Sjöstedt G. 2004. Systems approaches and their application. Norwell, MA: Kluwer academic publishers, Dordrecht.
  • Ortiz Morales D, Westerberg S, La Hera PX, Mettin U, Freidovich L, Shiriaev AS. 2014. Increasing the level of automation in the forestry logging process with crane trajectory planning and control. J Field Rob. 31(3):343–363. doi:10.1002/rob.21496.
  • Palander T, Nuutinen Y, Kariniemi A, Väätäinen K. 2012. Automatic time study method for recording work phase times of timber harvesting. For Sci. 59(4):472–483. doi:10.5849/forsci.12-009.
  • Persson T. 2020. Design of a workstation for teleoperated forwarders: exploring the future work within forestry. Diss. Luleå University of Technology.
  • Puodziunas M, Fjeld D. 2008. Roundwood handling at a Lithuanian sawmill-discrete-event simulation of sourcing and delivery scheduling. Balt For. 14(2):163–175.
  • Ringdahl O, Hellstrom T, Lindroos O. 2012. Potentials of possible machine systems for directly loading logs in cut-to-length harvesting. Can J For Res. 42(5):970–985. doi:10.1139/x2012-036.
  • Ringdahl O, Lindroos O, Hellström T, Bergström D, Athanassiadis D, Nordfjell T. 2011. Path tracking in forest terrain by an autonomous forwarder. Scand J For Res. 26(4):350–359. doi:10.1080/02827581.2011.566889.
  • Santos DWFDN. 2015. Análise técnico-econômico de sistemas de colheita: toras curtas e toras longas sob métodos mecanizado e semimecanizado.
  • Santos DWFDN, Magalhães Valente DS, Fernandes HC, Souza APD, Cecon PR. 2020. Modeling technical, economic and environmental parameters of a forwarder in a Eucalyptus forest. Int J For Eng. 31(3):197–204. doi:10.1080/14942119.2020.1786791.
  • Strandgard M, Mitchell R. 2015. Automated time study of forwarders using GPS and a vibration sensor. Croatian J For Eng. 36(2):175–184.
  • Sundberg U, Silversides CR. 1988. Operational efficiency in forestry vol. 1 analysis. Dordrecht Holland: Kluwer Academic Publishers.
  • Talbot B, Nordfjell T, Suadicani K. 2003. Assessing the utility of two integrated harvester-forwarder machine concepts through stand-level simulation. Int J For Eng. 14(2):31–43. doi:10.1080/14942119.2003.10702476.
  • Tiernan D, Zeleke G, Owende P, Kanali C, Lyons J, Ward S. 2004. Effect of working conditions on forwarder productivity in cut-to-length timber harvesting on sensitive forest sites in Ireland. Biosyst Eng. 87(2):167–177. doi:10.1016/j.biosystemseng.2003.11.009.
  • Visser R, Obi OF. 2021. Automation and robotics in forest harvesting operations: identifying near-term opportunities. Croatian J For Eng. 42(1):13–24. doi:10.5552/crojfe.2021.739.
  • Väätäinen K, Ala-Fossi A, Nuutinen Y, Röser D. 2006a. The effect of single grip harvester’s log bunching on forwarder efficiency. Balt For. 12(1):64–69.
  • Väätäinen K, Hyvönen P, Kankaanhuhta V, Laitila J, Hirvelä H. 2021. The impact of fleet size, harvesting site reserve, and timing of machine relocations on the performance indicators of mechanized CTL harvesting in Finland. Forests. 12(10):1328. doi:10.3390/f12101328.
  • Väätäinen K, Liiri H, Röser D. 2006b. Cost-competitiveness of harwarders in CTL-logging conditions in Finland-A discrete-event simulation study at the contractor level. In: Proceedings of precision forestry in plantations, semi-natural and natural forests. Citeseer Stellenbosch, South Africa: Proceedings of the international precision forestry symposium. Stellenbosch University; p. 451.
  • Westerberg S, Shiriaev A. 2013. Virtual environment-based teleoperation of forestry machines: designing future interaction methods. J Hum -Rob Interact. 2(3):84–110. doi:10.5898/JHRI.2.3.Westerberg.
  • Wickham H. 2016. Ggplot2: elegant graphics for data analysis. [Computer program]. New York: Springer-Verlag.
  • Zhang F, Johnson DM, Johnson MA. 2012. Development of a simulation model of biomass supply chain for biofuel production. Renewable Energy. 44:380–391. doi:10.1016/j.renene.2012.02.006.